• Title/Summary/Keyword: Elastic work factor

Search Result 61, Processing Time 0.025 seconds

Elastic Work Factor of CLS Specimen and Determination of $G_c$ for Graphite/Peek Composites by Using the Elastic Work Factor (CLS 시편의 탄성일인자 유도 및 이를 적용한 열가소성 Graphite/Peek 복합재의 파괴인성 $G_c$ 측정)

  • Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2792-2799
    • /
    • 1996
  • It was shown in the previous study that the numerically derived elastic work factor for CLS specimen was independent of fiber direction for a unidirectional case. Also, it was proposed the elastic work factor could be used to determine energy release rate from a single test record. In the present study, elastic work factor was derived from a simple beam theory to investigate its dependence on material property and geometric condition. Also, the elastic work factor of CLS specimen was applied experimentally to determine critical energy release rate in order to prove its validity determining critical energy release rate from a single specimen. For this purpose, critical energy release rate determined using the elastic work factor was compared with that determined by the compliance method. The results showed that while elastic work factor is affected by $t_2/t_1$ and $L_2/L_1$ it is independent of fiber angle for a unidirectional case. It was also found that critical energy release rates determined by both methods are comparable each other, thus elastic work factor approach can be used to determine energy release rate from a single test specimen.

Effect of Hydrostatic Pressure on the Elastic Work Factor of Graphite/Epoxy Composites (정수압이 탄소섬유/에폭시 복합재의 탄성일인자에 미치는 영향)

  • 이지훈;김만태;신명근;한운용;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1390-1393
    • /
    • 2003
  • Work factor approach is conveniently used in metal fracture mechanics to determine fracture toughness from a single fracture test. In this work, we investigated the applicability of the work factor approach in order to determine fracture toughness of thick graphite/epoxy composites in the hydrostatic pressure environment from a single fracture test. The effect of hydrostatic pressure on the elastic work factor was studied, The stacking sequence used was multi-directional, [0$^{\circ}$/${\pm}$45$^{\circ}$/90$^{\circ}$]. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. The results showed that the elastic work factor was not affected by the hydrostatic pressure, The elastic work factor decreased in a linear fashion with crack length.

  • PDF

$G_IC$ determination of unidirectional graphite /epoxy DCB composites from the elastic work factor approach (탄성일인자방법을 적용한 단일방향 탄소섬유/에폭시 DCB 시편의 파괴인성 결정)

  • Rhee, Kyeong-Yeop;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.540-544
    • /
    • 1998
  • Compliance calibration method is frequently used to determine $G_IC$ from the DCB composite specimen. However, the method requires at least 4 to 5 fracture test (loading-unloading) records. In this study, $G_IC$ of unidirectional graphite/epoxy DCB composites was determined from the elastic work factor approach which uses a single fracture test record. In order to inspect the validity of the elastic work factor approach, $G_IC$ determined from the elastic work factor approach was compared to that of determined from the compliance calibration method. It was shown that $G_IC$ determined from the elastic work factor approach was comparable to that determined from the compliance calibration method. That is, the elastic work factor approach can be used to determine $G_IC$ of unidirectional graphite/epoxy DCB specimen from a single fracture record.

Determination of Mode I Fracture Toughness of Fiber Reinforced Composites by the Elastic Work Factor (섬유강화 복합재의 $G_ {IC}$ 결정을 위한 일인자방법)

  • Lee, Gyeong-Yeop;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3491-3497
    • /
    • 1996
  • The work factor approach was applied to determine $G_ {IC}$ of fiber reinforced composites (AS4/3501) from a single unidirectional (0-deg) DCB specimen. Elastic work factors of DCB specimen for three different symmetrical staking sequences were derived from a simple bending theory and a finite element method. The results showed that elastic work factors calculated from both methods were comparable each other. In particular, the elastic work factor of DCB specimen with symmetrical stacking sequence is independent of stacking sequence. The $G_ {IC}$ determined from the work factor approach was compared with that determined by the compliance method. The results showed that the work factor approach and the compliance method produce comparable results of $G_ {IC}$. Thus, $G_ {IC}$ can be determined from a single DCB specimen using the work factor approach.

Application of Work Factor to Determine Fracture Toughness of Unidirectional Graphite/Epoxy Composites under Hydrostatic Pressure (정수압을 받는 일방향 탄소섬유/에폭시 복합재의 파괴인성 결정을 위한 일인자 적용)

  • 이경엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.46-49
    • /
    • 2001
  • In this paper. tile validity of work factor approach was investigated to determine compressive fracture toughness of unidirectional graphite/epoxy composites under hydrostatic pressure environment. The elastic work factor was determined under various pressures as a function of delamination length. It was found that elastic work factor was not affected by hydrostatic pressure.

  • PDF

Boundary Element Evaluation of Stress Intensity Factor for Interface Crack in Elastic and Viscoelastic Composite Materials (경계요소법에 의한 탄성-점탄성 복합구조체의 계면균열 해석)

  • 이상순;김정규;황종근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • The focus of the present work is on the computation of the stress intensity factor for the crack at the elastic-viscoelastic bimaterial interface. First, the stress intensity factor for an interface crack in dissimilar elastic and viscoelastic materials is dervied by applying the correspondence principle to associated elastic expression. Then the time-domain boundary element analysis is performed to calculate the stress intensity factor. Numerical results show that the proposed method is very useful for the analysis of the interface crack in elastic and viscoelastic materials.

  • PDF

Determination of Elastic Work Factor of Graphite/Epoxy Composites Subjected to Compressive Loading under Hydrostatic Pressure Environment (정수압 환경에서 압축하중을 받는 Graphite/Epoxy 적층복합재의 탄성일인자 결정)

  • 신명근;이경엽;이중희
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.14-18
    • /
    • 2002
  • In the present study, we investigated the effects or hydrostatic pressure and stacking sequence on the elastic work factor to determine compressive fracture toughness of graphite/epoxy laminated composites in the hydrostatic pressure environment. The stacking sequences used were unidirectional. $\textrm{[}0^{\circ}\textrm{]}_{88}$ and multi-directional, $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}\textrm{]}_{88}$ case were 0.1 MPa, 70MPa, 140MPa. and 200MPa. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$ case were 0.1MPa, 100MPa, 200MPa, and 300MPa. It was found that the elastic work factor was not affected by the hydrostatic pressure and the stacking sequence. Also, it was found that the elastic work factor decreased in a linear fashion with delamination length.

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

Effects of Stacking Sequence on the Application of the Single Specimen Technique to CLS Specimen (단일시편방법의 CLS 시편 적용시 적층성이 미치는 영향)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1952-1959
    • /
    • 1999
  • The work factor approach, so-called single specimen technique could be used to determine energy release rate from a single test record for unidirectional CLS specimen. In the present study, the work factor approach was extended to determine the mixed-mode fracture toughness of multi-directional graphite/epoxy laminated composites. Multi-directional CLS specimens were used for fracture tests. The stacking sequences used for the lap and the strap were $[90_2/0_2]_s/[0_4/90_4]_s$ and $[0/\pm45/0]_s/[0_2/\pm45_2/0_2]_2$, respectively. For both cases, the fracture toughness determined from the work factor approach was compared with that determined from the compliance method. It was found that both methods produced fracture toughness within a maximum 15% difference for each stacking sequence. The fractography analysis also showed that the fiber bridging occurred for$[0/\pm45/0]_s/[0_2/\pm45_2/0_2]_2$ case while it did not occur for $[90_2/0_2]_s/[0_4/90_4]_s$ case.