• 제목/요약/키워드: Elastic wave propagation velocity

검색결과 76건 처리시간 0.023초

적층 Unidirectional CFRP 판의 이방성과 Lamb wave의 $S_0$ Mode 군속도의 관계 (The Relationship Between Group velocity of Lamb wave $S_0$ Mode and Anisotropy in Laminated Unidirectional CFRP Plates)

  • 이정기;김영환;이승석;김호철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.272-277
    • /
    • 2004
  • The elastic waves in the plate are dispersive waves with the characteristics of Lamb waves. However, $S_0$ symmetric mode is less dispersive in the frequency region less than first cut-off frequency. And, in anisotropic plates such as CFRP plates, the propagation velocities vary with the direction. So, the wave vector direction to be the phase velocity direction is not accord with the energy flow direction to be the group velocity direction. In this work, the group velocities of the $S_0$ symmetric mode less than the first cut-off frequency was analyzed with the group velocity dispersion curves in unidirectional CFRP plate. And, the group velocity curve obtained by the group velocity dispersion curves are compared with the measured velocities as varied the propagation direction of the Lamb wave. The measured velocities are good agreement with the corrected group velocity curve except near the fiber direction which is called the cusp region. When the propagation direction is not accorded with the principal axis, the direction of the group velocities declines to the fiber direction in the unidirectional CFRP plates. This implies that the energy propagates preferentially toward fiber direction.

  • PDF

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.

Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.753-766
    • /
    • 2015
  • An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

탄성표면파의 온도특성 (Temperature Characteristics of Elastic Surface Wave)

  • 김종상
    • 대한전자공학회논문지
    • /
    • 제10권3호
    • /
    • pp.53-60
    • /
    • 1973
  • 압전결정 LiMbO3와 LiTaO3의 로테이트 Y캇트, X전반의 탄성표면파(Rayleigh 표면파)의 위상속도 및 지연시간의 온도계수를 수치해석방법에 의해서 계산하였으며 LiNbO3 130°로테이트 Y캇트, 총전반의 탄성표면파의 온도계수를 액체 He의 온도로부터 실온까지 측정하였다. 이 지연시간의 온도계수의 실험치 70×10-6/℃는 계산치 72.7×10-6/℃와 잘 일치함을 확인하였다. 또한 LiNbO3 130° 로테이트 Y캇트, X전반의 탄성표면파의 지연시간의 온도계수는 액체 He온도근처에서 약 16×10-6/℃로 작아짐을 알았다.

  • PDF

Thin-Shell Approach for Elastic Wave Propagation in a Pipe with Liquid

  • Kim Jin Oh;Rose Joseph L.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1087-1094
    • /
    • 2005
  • This paper presents the validity and limitation of the thin-shell approach for the analysis of elastic wave propagation in a pipe with nonviscous liquid. The phase velocities calculated by the thin-shell approach were compared with those calculated by the thick-cylinder approach. In contrast to the case of the empty pipe, where only two modes were obtained and the first mode was calculated in a limited frequency range, the results for the liquid-filled pipe exhibits a large number of modes due to the large number of branches of the apparent liquid mass. Several of the lowest modes of the waves in a liquid-filled pipe were calculated for various pipe thicknesses in a low frequency range. The thin-shell approach was valid for a reasonable range of pipe thicknesses.

대칭 적층 복합재 연소관의 탄성파 전파에 관한 실험적 연구 (An Experimental Study on Elastic Wave Propagation in a Symmetrically Filament-Wound Composite Motor Case)

  • 송성진;최지웅
    • 비파괴검사학회지
    • /
    • 제18권3호
    • /
    • pp.191-204
    • /
    • 1998
  • 복합재 연소관의 수압/AE 시험의 성공적 수행을 위한 핵심 과제중의 하나는 수압으로 인해 방출되어 연소관을 통해 전파하는 탄성파의 특성을 분석함으로써 수압/AE 시험시 감지해야할 탄성파의 최적 성분을 결정하는 것이다. 이러한 문제를 해결하기 위해 본 연구에서는 대칭 적층 구조를 갖는 복합재 연소관에 광대역 초음파를 발진시키고 전파방항과 거리를 변화시킨 105지점에서 광대역 음향방출 센서를 이용하여 복합재 내를 전파한 탄성파를 수신하고, 그 특성(주파수, 전파거리, 전파속도)을 분석하였다. 이와 같은 실험을 내부가 비어 있는 연소관과 내부를 물로 채우고 수압을 가한 연소관에 대해 반복 수행함으로써, 수압이 탄성파의 전파특성에 미치는 영향을 분석하고, 이를 바탕으로 수압/AE 시험시 검출할 탄성파의 최적 성분을 결정하였다.

  • PDF

Surface wave propagation in an initially stressed heterogeneous medium having a sandy layer and a point source

  • Manna, Santanu;Misra, J.C.;Kundu, Santimoy;Gupta, Shishir
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.169-176
    • /
    • 2018
  • An attempt has been made here to study the propagation of SH-type surface waves in an elastic medium, which is initially stressed and heterogeneous and has a point source inside the medium. The upper portion of the composite medium is a sandy layer. It is situated on an initially stressed heterogeneous half-space, whose density, rigidity and internal friction are function of depth. The analysis has been carried out by using Fourier transform and Green's function approach. The phase velocity has been investigated for several particular situations. It has been shown that the results of the study agree with those the case of Love wave propagation in a homogeneous medium in the absence of the sandy layer, when the initial stress is absent. In order to illustrate the validity of the analysis presented here, the derived analytical expression has been computed numerically, by considering an illustrative example and the variances of the concerned physical variables have been presented graphically. It is observed that the velocity of shear wave is amply influenced by the initial stress and heterogeneity parameters and the presence of the sandy layer. The study has an important bearing on investigations of different problems in the earth's interior and also in seismological studies.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

이차원 AE음원 위치추정법에 관한 연구 (A Study on the 2-Dimensional AE Source Location Methods)

  • 장경환;김달중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.419-422
    • /
    • 1995
  • In this paper, we propose two methods for AE source location on the material with unknown AE wave velocity. By this method, we can apply this method to arbitrary material of which properties are not known exactly. Also, in this paper, the mechanism of error generation in both methods are discussed and performances are compared by using computer simulation and experiments which uses a lead break as the AE source on the aluminum plate.

  • PDF

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.