• Title/Summary/Keyword: Elastic wall

Search Result 365, Processing Time 0.032 seconds

Free Vibration Analysis of 'ㄱ' Type Wall Structure using Polynomials having the Property of a Simple and Fixed Support Euler Beam Functions (단순 및 고정 지지된 Euler 보함수 성질을 갖는 다항식을 이용한 'ㄱ'형태 벽면 구조의 고유진동해석)

  • Yoon, DuckYoung;Park, Jeonghee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.948-953
    • /
    • 2014
  • Many studies using the assumed mode method have been found for the free vibration analysis of stiffened plate with known elastic boundary conditions. However many local structures such as tank edges and equipment foundations consist of connected structures and it is very difficult to find suitable elastic boundary conditions. In this study combined polynomials which satisfy simply and fixedly supported boundary conditions are proposed. The proposed method has been applied to tanks which bounded by bulkhead and a deck. The results of this study shows good agreements with these obtain by the FEA S/W(Patran/Nastran).

Sound Absorption Effects in a Rectangular Cavity According to the Surface Impedance of Wall (벽면의 임피던스변화에 따른 폐공간 내부에서의 음장특성 분석)

  • 오재응;김상헌;도중석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.687-694
    • /
    • 1997
  • The anisotropy and shape of distributed piezopolymer actuator have advantages over isotropic piezo ceramic materials, since these features of PVDF can be utilized as another design variable in control application. This study is interested in the reduction of sound transmission through elastic plate into interior space by using the PVDF actuator. The plate-cavity system is adopted as a test problem. The vibration of composite plate and the sound fields through plate are analyzed by using the coupled finite element and boundary element method. Some numerical simulations are performed on sound transmission through elastic plates. To investigate the effects of anisotropy and shape of distributed piezopolymer actuator, various kinds of distributed PVDF actuators are applied in sound control simulation for isotropic and anisotropic plates. The PVDF actuators applied are different from each other in their shapes and laminate angles. The results of control simulation show that the control effectiveness of distributed PYDF actuator can be enhanced by using the coupling between shape of actuator and vibration modes of structure and the anisotropy of piezoelectric properties of PVDF.

  • PDF

Comparison of Adjustments to Drought Stress Among Seedlings of Several Oak Species

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.343-347
    • /
    • 1994
  • In order to compare the adjustment of 6 oak species to water stress, the components of water status, tissue elastic modulus, free proline content of leaves and morphological characteristics were determined in pot culture. uercus dentata and . mongolica responded effectively to drought with high root : shoot (R/S) ratio or maintenance of high turgor pressure by large and fast osmotic adjustment and . variabilis with maintenance of high turgor pressure by low elastic modulus under drought. Meanwhile, . aliena and . serrata responded effectively with low omotic potential (Ψo) at full saturation and . acutissima with long root in spite of rigid cell wall and high osmotic potential (Ψo) at full saturation. Proline content in leaves of . dentata, . mongolica and . aliena increased early and rapidly at high leaf water potential (Ψleaf). The results indicate that 6 oak species have adjustment different from each other to water stress.

  • PDF

Design Approach of Large-scale Experimental Facilities Reflect the Load Flow (하중흐름을 통한 대형구조실험용 반력시설물의 설계)

  • Lee, Sung-Eun;Ko, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.69-77
    • /
    • 2016
  • The purpose of this study is to present a method that can estimate the height of reaction facilities for large structural experiment through load flow as primary design procedure. The characteristic of the load transmission according to the type of experiment was analyzed to obtain tensile and compressive forces occurring on the reaction facilities. Strong walls that are affected by the bending moment is applied the post-tensioning method, and the strong floor under the control of the tension and compression is designed in accordance with the load flow. And the optimum cross-section of the reaction facilities was obtained by comparing the stresses of the tensile stress and crack the concrete. Through validating elastic analysis, the design results were satisfied a given design conditions.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

Equivalent lateral force method for buildings with setback: adequacy in elastic range

  • Roy, Rana;Mahato, Somen
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.685-710
    • /
    • 2013
  • Static torsional provisions employing equivalent lateral force method (ELF) require that the earthquake-induced lateral force at each story be applied at a distance equal to design eccentricity ($e_d$) from a reference resistance centre of the corresponding story. Such code torsional provisions, albeit not explicitly stated, are generally believed to be applicable to the regularly asymmetric buildings. Examined herein is the applicability of such code-torsional provisions to buildings with set-back using rigid as well as flexible diaphragm model. Response of a number of set-back systems computed through ELF with static torsional provisions is compared to that by response spectrum based procedure. Influence of infill wall with a range of opening is also investigated. Results of comprehensive parametric studies suggest that the ELF may, with rational engineering judgment, be used for practical purposes taking some care of the surroundings of the setback for stiff systems in particular.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis (비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가)

  • Park, Jung Woo;Lee, Jae Uk;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2013
  • The effects of earthquakes can be devastating especially to existing structures that are not based on earthquake resistant design. This study proposes a steel grid shear wall that can provide a sufficient lateral resistance and can be used as a seismic retrofit method. The pushover analysis was performed on RC structure with and without the proposed steel grid shear wall. Obtain the performance point that the target structure for seismic loads applied to evaluate the response and performance levels. The capacity spectrum at performance point is nearly elastic range, so satisfied the performance objectives(LS level). And response modification factor(R factor) were calculated from the pushover analysis. The R factor approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. The R factor increases from 2.17 to 3.25 was higher than the design criteria. As a result, according to reinforcement by steel grid shear wall, strength, stiffness, and ductility of the low-rise RC structure has been appropriately improved.

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement (섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가)

  • Lee, Jong-Ho;Lee, Kang-Il;Yu, Nam-Jae;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.243-252
    • /
    • 2019
  • Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.