• 제목/요약/키워드: Elastic sheet

검색결과 178건 처리시간 0.019초

고무패드 변형의 3차원 유한요소해석 (Three-dimensional Finite Element Analysis of Rubber Pad Deformation)

  • 신수정;이태수;오수익
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.111-120
    • /
    • 1998
  • This paper is the first one of two-parted research efforts focusing on the modeling of rubber pad forming process. The rubber pad, driven by the pressurized fluid during the forming process, pushes the sheet metal to solid tool half and forms a part to final shape. In this part of the paper, a numerical procedure for the FE analysis of the rubber pad deformation is presented. The developed three-dimensional FE model is based on the total Lagrangian description of rubber maerial characterized by nearly incompressible hyper-elastic behavior under a large deformation assumption. Validity of the model as well as effects of different algorithms corresponding to incompresibility constraints and time integration methods on numerical solution responses are also demonstrated.

Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers

  • Park, Jai-Woo;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.131-150
    • /
    • 2013
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section (SHS) strengthened with carbon fiber reinforced polymers (CFRP) sheets. 9 specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the CFRP sheet orientation. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 100 transversely. Also, stiffness and ductility index (DI) were compared between un-retrofitted specimens and retrofitted specimens. Finally, it was shown that the application of CFRP to slender sections delays local buckling and subsequently results in significant increases in elastic buckling stress. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론 (Nonsteady Plane-strain ideal forming with elastic dead zone)

  • 이원오;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2004
  • Ever since the ideal forming theory has been developed fur process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

  • PDF

나노 인덴테이션의 하중-변위 곡선을 이용한 용융아연도금 강판 코팅층의 기계적 특성 결정 (Determination of the Mechanical Properties of the Coated Layer in the Sheet Metal Using Load-Displacement Curve by Nanoindentation Technique)

  • 고영호;이정민;김병민
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.731-737
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading-unloading curve was used to determine the Young's modulus, hardness. A new method is recently being developed for elastic-plastic properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength is found to have significant effect on measured data. The load-displacement curves of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films, and then these are computed using the analysis procedure. The developed neural networks apply also to obtain reliable mechanical properties.

제진강판의 기계적 특성평가와 자동차오일팬으로의 적용 (Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan)

  • 정재환;민병두;하용철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

Homogenized elastic properties of graphene for moderate deformations

  • Marenic, Eduard;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.137-155
    • /
    • 2015
  • This paper presents a simple procedure to obtain a substitute, homogenized mechanical response of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics simulation results and homogenization method. Moreover, a series of virtual experiments are performed on the representative graphene lattice. Following these results, the constitutive model development is based on the well-established continuum mechanics framework, that is, the non-linear membrane theory which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is shown on a simple model problem where the hyperelastic strain energy density function is chosen in polynomial form.

Numerical modelling of springback behavior in folding process

  • Serier, Mohamed;Bendaoudi, Seif-Eddine;Mansour, DJazia-Leila Ben;Tabti, Affaf
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.75-81
    • /
    • 2019
  • Through experimental and numerical studies of metal forming processes by plastic deformation, this paper represents a numerical simulation by finite element of the mechanical behavior of the material during a permanent deformation phenomenon. The main interest of this study is to optimize the shaping processes such as folding. In this context the elastic return for the folding process has been further reduced by using the design of experiments approach. In this analysis, it is proposed to consider the following factors: bending radius, metal-sheet thickness, gap and length of the fold.

유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석 (Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method)

  • 서영호;허성찬;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.

직사각형판(直四角形板)의 접수진동(接水振動) (The Vibration of an Elastic Rectangular Plate in a Fluid)

  • 김극천
    • 대한조선학회지
    • /
    • 제13권4호
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.