• Title/Summary/Keyword: Elastic properties

Search Result 2,361, Processing Time 0.033 seconds

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

A Method to Estimate Tensile Properties using Combined Nano-Indentation Tests and Finite Element Simulations (Nano-indentation 실험과 유한요소 해석을 연계한 재료의 탄소성 물성 평가법 개발)

  • Kim Y.J.;Song T.K.;Park J.H.;Hahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.503-504
    • /
    • 2006
  • Determination of elastic properties of nano-scale materials using nano-indentation tests is well established, but that of plastic properties is not yet clear. This paper presents a method to extract plastic properties from nano-indentation test, together with results from detailed elastic-plastic FE analysis. It shows that the plastic properties determined from this method are not unique, in the sense that a number of different plastic properties can give the same load-displacement response from nano-indentation test. possible ways to overcome such problems are discussed.

  • PDF

Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes Using an Ultrasonic Resonance Scattering Spectroscopy

  • Kim, Jin-Yeon;Li, Zheng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.548-557
    • /
    • 2010
  • An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change of the dispersion curves to the elastic properties of the composite tube is observed for both normal and oblique incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube samples. The elastic constants of two boron/aluminum composite tube samples manufactured under different conditions are reconstructed through an optimization procedure in which the residual between the experimental and theoretical phase velocities (dispersion curves) is minimized.

Elastic modulus measurement of thin films using laser generated guided ultrasonic waves (레이저 초음파 기법을 이용한 박막 탄성계수 측정)

  • Cho, Seung Hyun;Heo, Taehoon;Ji, Bonggyu;Ahn, Bongyoung;Jang, Gang-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.550-554
    • /
    • 2014
  • Regarding thin films in MEMS/NEMS structures, the exact evaluation of mechanical properties is very essential to enhance the reliability of their design and manufacturing. However, such methods as a tensile test and a resonance test, general methods to measure elastic moduli, cannot be applied to thin films since its thickness is so small. This work concerns guided wave based elastic modulus measurement method. To this end, guided wave excitation and detection system using a pulsed laser and a laser interferometry has been established. Also an elastic modulus extraction algorithm from the measured guided wave signal was developed. Finally, it was applied to actual thin film structures such as Ni-Si and Al-Si multilayers. From experimental results, we confirm that the proposed method has considerable feasibility to measure elastic properties of thin films.

  • PDF

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

Predictions of elastic properties of stitched multi-warped knitted composites (다축경편 복합재료 물성의 스티칭 효과)

  • Kim, Hyung-Woo;Chun, Heoung-Jae;Byun, Joon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.125-129
    • /
    • 2005
  • A micromechanical model for predicting the elastic constants of stitched multi-axial warp knitted (MWK) composite is developed. The averaging method is used to obtain effective properties of stitched MWK fabric composites. In the analysis, a representative volume of the MWK fabric composite is identified. The geometric limitations, effects of stitching yarns and design parameters of MWK fabric composites are considered in the model. Then, the elastic properties of stitched MWK fabric composites are predicted. Finally, the predicted elastic constants are validated by comparison with experimental data. The predicted results are in fair agreement with the experimental results.

  • PDF

Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Its Applications (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 적용)

  • Jung Hyang Nam;Choi Jae Hwan;Chung Hee Taeg;Lee June Key
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.170-174
    • /
    • 2005
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. Effects of the fraction of the potential site($f_p$) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are investigated. For this research, polysilicon is applied to this system as the polycrystalline thin-films.

Parametric Effects of Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Devices (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템의 매개변수의 영향)

  • 정향남;최재환;정희택;이준기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.50-54
    • /
    • 2004
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. The effects of the fraction of the potential site( $f_{P}$ ) and the nucleation probability( $P_{N}$ ) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are studied.d.d.

  • PDF

Elastic Properties of 2-Step Braided Composites (3차원 2-Step Braided 복합재료의 탄성 계수 예측)

  • Byun, Joon-Hyung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF