• Title/Summary/Keyword: Elastic plate

Search Result 995, Processing Time 0.021 seconds

Development of Environment-friendly Cushioning Materials by Pulping of Waste Residual Woods (폐잔재의 펄프화를 통한 환경친화적 완충소재의 개발)

  • Lee, Young-Min;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Song, Dae-Bin;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.61-71
    • /
    • 2006
  • Environment-friendly shock-absorbing (cushioning) materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS(Expanded Polystyrene) and pulp mold. Even though the TMP cushions made using at different suction times had many free voids in their inner fiber structures, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

A Study on the Development of Force Limiting Devices of Cross-Section Cutting Types (단면절삭형 응력제한 장치의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2015
  • This paper describes the development of force limiting device(FLD). The FLD could induce compressive yield before occurring elastic buckling for slender member under compressive load. Therefore, it might prevent reduction of load carrying capacity by elastic buckling and the structures with the devices would behave stable. A new type of FLD reduced cross area is proposed in this study different to existing studies like as out of plane type, slit type and folded plate type. The parameters of specimens are depth, width and number of cutting. The structural capacity and characteristics of proposed types were verified by experiment and FEM analysis. The FLD of cutting type is efficient in compressive member.

Analysis of fatigue crack growth behavior in composite-repaired aluminum place (복합재 패치 보강 평판의 균열선단 진전거동 해석)

  • 이우용;이정주
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.68-73
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

An Experimental Assessment of the Effects of Residual Stresses on Fracture Behavior of the Plate (압축잔류응력이 판의 파괴 특성에 미치는 영향에 관한 실험적 평가)

  • Jang, Chang-Doo;Park, Yong-Kwan;Song, Ha-Cheol;Kim, Byung-Il
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.435-440
    • /
    • 2002
  • The quantitative assessment of the effect of the residual stress on fracture behavior was executed by some experiment and numerical analysis. First of all, artificial residual stresses were imposed on CT(Compact Tension) specimens by local heating using gas torch, and an appropriate distribution of residual stresses was obtained by thermal elastic-plastic FE analysis. To certify the result of the FE analysis, an experimental measurement was performed in accordance with ASTM standard. Fracture toughness test was executed on the several types of specimens. The first type was the specimen without residual stresses, and the others had different peak value of compressive residual stress at crack front via controlling the heat flux. All the test results were presented on th J resistance(JR) curves and discussed to verify the effect of compressive residual stresses on fracture behavior.

Study on Establishing the Subgrade Compaction Control Methods Based on the In-situ Elastic Modulus (현장 탄성계수에 근거한 노상 다짐관리방안 연구)

  • Choi, Jun-Seong;Han, Jin-Seok;Kim, Jong-Min
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • In many countries including Korea, the design concept of pavement structure has been converted from empirical method to mechanisticempirical method since the advent of compaction control based on resilient modulus proposed by AASHTO in 1986. Studies of last decades indicates that the classical compaction control method based on relative compaction and plate bearing test(PBT) will necessarily move to the methods taking advantage of light falling weight deflectometer(LFWD) and dynamic cone penetrometer(DCP) in addition to PBT. In this study, the validity of resilient modulus prediction equation proposed by Korean Pavement Design Guide is verified by comparison with physical properties of subgrade soil and the results of structural analysis. In addition, correlational equations between elastic modulus measured by various field tests and resilient modulus estimated by empirical model are proposed. Finally, a field test-based compaction control procedure for subgrade is suggested by using proposed correlational equations.

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

Correlation Between Joint Angular Displacement and Moment in the Human Foot (인체 족부관절의 각변위와 모멘트의 상관관계)

  • 김시열;신성휴;황지혜;최현기
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.209-215
    • /
    • 2003
  • The goal of this study was to investigate the relationship between kinematic and kinetic characteristics of foot joints resisting ground reaction force. Passive elastic joint moment and angular displacement were obtained from the experiment using 3 cameras and force plate. The relationship between joint angle and moment was mathematically modeled by using least square method. The ranges of motion of joints ranged from 5$^{\circ}$ to 7$^{\circ}$ except metatarsophalangeal joint. In the study, we presented simple mathematical models that could relate joint angle and plantar pressure. From this model, we can got the kinematic data of joints which is not available from conventional motion analysis. Furthermore, the model can be used not only for biomechanical model which simulates gait but also for clinical evaluation.

A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition (압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Park Sung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.29-33
    • /
    • 2004
  • Design of general steel structure had applied to achieve elastic designing concept so far. Because elastic design supposes that whole structure complies with elasticity formula so that achieve via allowable stress of material. It is concept that calculate stress distribution of construction about action external load and estimate load when the maximum stress reaches equally with allowable stress that is established by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and structure in limited state finally on the whole as showing complicated process by interference between collapse and buckling under compression. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF