• Title/Summary/Keyword: Elastic plate

Search Result 1,001, Processing Time 0.025 seconds

Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load (면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴)

  • 권성미;정재호;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF

Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout (압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

Elastic Analysis of Reinforced Concrete Slab Using Orthotropic Plate Theory (직교이방성판 이론에 의한 콘크리트 슬래브의 탄성해석)

  • 정재호;정성우;윤순종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.487-492
    • /
    • 1997
  • Two-way concrete slab is often modeled as an orthotropic plate. In the modeling, flexural rigidities of the slab which depend upon the re-bar quantity have to be taken into account. Elastic equivalence technique in which the equilibrium and compatibility of the cross-section of slab satisfied is utilized to determine th flexural rigidities. In the analysis Navier's method is applied on the concrete slab with all edges simply supported under inform lateral load. In addition to the analysis using orthotropic plate theory, finite element method is also adopted to suggest the finite element modeling and to investigate the applicability of the method. Results obtained by both methods were compared and it is observed that the difference of the results was increased as the ratio of re-bar quantity increased.

  • PDF

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

  • Lee Jae-Kon;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2224-2230
    • /
    • 2005
  • In this study, the validity of the Eshelby-type model for predicting the effective Young's modulus and in-plane Poisson's ratio of the 2-dimensional perforated plate has been investigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-type model are compared with those by finite element analysis. Whenever the ratio of the porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants predicted by finite element analysis are convergent regardless of the arrangement of the porosities. Under these conditions, the effective Young's moduli of the perforated plate can be predicted within the accuracy of $5\%$ by the Eshelby-type model, which overestimates and underestimates the effective Poisson's ratios by $10\%\;and\;6\%$ for the plates with periodically and non-periodically arranged porosities, respectively.

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation

  • Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Benachour, Abdelkader;Bedia, El Abbas Adda
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this research work, free vibrations of simply supported functionally graded plate resting on a Winkler-Pasternak elastic foundation are investigated by a new shear deformation theory. The influence of alternative micromechanical models on the macroscopic behavior of a functionally graded plate based on shear-deformation plate theories is examined. Several micromechanical models are tested to obtain the effective material properties of a two-phase particle composite as a function of the volume fraction of particles which continuously varies through the thickness of a functionally graded plate. Present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. The energy functional of the system is obtained using Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models on natural fundamental frequencies.