• Title/Summary/Keyword: Elastic pendulum

Search Result 18, Processing Time 0.085 seconds

Response of an Elastic Pendulum under Random Excitations (불규칙 가진을 받는 탄성진자의 응답 해석)

  • Lee, Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • Dynamic response of an elastic pendulum system under random excitations was studied by using the Lagrangian equations of motion which uses the kinetic and potential energy of a target system. The responses of random excitations were calculated by using Monte Carl simulation which uses the series of random numbers. The procedure of Monte Carlo simulation is generation of random numbers, system model, system output, and statistical management of output. When the levels of random excitations were changed, the expected responses of the pendulum system showed various responses.

Stability of an Elastic Pendulum System due to Random Excitations (불규칙 가진의 크기에 따른 탄성진자 계의 안정성 검토)

  • Lee, Sin-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.697-702
    • /
    • 2011
  • Responses of multi degree of freedom systems under random excitations can be estimated by using Monte Carlo simulation. The equations of motion of an elastic pendulum system include nonlinear terms and show irregular characteristics under random excitation. While the magnitude of random excitation is small the response of an elastic pendulum shows borderlines. As the magnitudes of excitation increase, the responses show divergence with very large amplitudes of motion and the tendency is diverse dependent on the magnitude and type of random excitations and the ratio of natural frequencies.

Analysis of body sliding along cable

  • Kozar, Ivica;Malic, Neira Toric
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.291-304
    • /
    • 2014
  • Paper discusess a dynamic engineering problem of a mass attached to a pendulum sliding along a cable. In this problem the pendulum mass and the cable are coupled together in a model described by a system of differential algebraic equations (DAE). In the paper we have presented formulation of the system of differential equations that models the problem and determination of the initial conditions. The developed model is general in a sense of free choice of support location, elastic cable properties, pendulum length and inclusion of braking forces. Examples illustrate and validate the model.

Implementation of a Parallel Inverted Pendulum System with Decoupling Control (병렬형 역진자 시스템 제작 및 분리제어)

  • 김주호;박운식;최재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.162-169
    • /
    • 2000
  • In this paper, we develop a parallel inverted pendulum system that has the characteristics of the strongly coupled dynamics of motion by an elastic spring, the time-variant system parameters, and inherent instability, and so on. Hence, it is possible to approximate some kinds of a physical system into this representative system and to apply the various control theories to this system in order to verie their fidelity and efficiency. For this purpose, an experimental system of the parallel inverted pendulum has been implemented, and a control scheme using the eigenstructure assignment for decoupling control is presented in comparison with the conventional LQR optimal control method. Furthermore, this system can be utilized as a testbed to develop and evaluate new control algorithms through various setups. Finally, in this paper, the results of the experiment are compared with those of numerical simulations for validation.

  • PDF

Vibration mitigation of guyed masts via tuned pendulum dampers

  • Lacarbonara, Walter;Ballerini, Stefano
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.517-529
    • /
    • 2009
  • A passive vibration mitigation architecture is proposed to damp transverse vibrations of guyed masts. The scheme is based on a number of pendula attached to the mast and tuned to the vibration modes to be controlled. This scheme differs from the well-known autoparametric pendulum absorber system. The equations of motion of the guyed mast with an arbitrary number of pendula are obtained. The leading bending behaviour of a typical truss mast is described by an equivalent beam model whereas the guys are conveniently modeled as equivalent transverse springs whose stiffness comprises the elastic and geometric stiffness. By assuming a mast with an inertially and elastically isotropic cross-section, a planar model of the guyed mast is investigated. The linearization of the equations of motion of the mast subject to a harmonic distributed force leads to the transfer functions of the structure without the dampers and with the dampers. The transfer functions allow to investigate the mitigation effects of the pendula. By employing one pendulum only, tuned to the frequency of the lowest mode, the effectiveness of the passive vibration potential in reducing the motion and acceleration of the top section of the mast is demonstrated.

Effect of seismic pounding on buildings isolated by triple friction pendulum bearing

  • Amiri, Gholamreza Ghodrati;Shakouri, Ayoub;Veismoradi, Sajad;Namiranian, Pejman
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • The current paper investigates the effect of the seismic pounding of neighboring buildings on the response of structures isolated by Triple Friction Pendulum Bearing (TFPB). To this end, a symmetric three-dimensional single story building is modeled for analysis with two specified levels of top deck and base deck, to capture the seismic response of the base isolators and building's roof. Linear elastic springs with different level of gaps are employed to calculate the impact between the buildings. Nonlinear Dynamic Time History Analyses (NDTHA) are conducted for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are assumed for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift and top deck acceleration of the superstructure. The results also indicate the profound effect of the stiffness of the adjacent buildings on the value of the impact they impose to the superstructure. Also, in situations of potential pounding, the increment of the fundamental period of the TFPB base isolator could intensify the impact force up to nearly five-fold.

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

Chaotic Behavior of a Double Pendulum Subjected to Follower Force (종동력을 받는 이중진자의 혼돈운동 연구)

  • 장안배;이재영
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF