• Title/Summary/Keyword: Elastic optical network

Search Result 6, Processing Time 0.017 seconds

Dynamic Routing and Spectrum Allocation with Traffic Differentiation to Reduce Fragmentation in Multifiber Elastic Optical Networks

  • ZOUNEME, Boris Stephane;ADEPO, Joel;DIEDIE, Herve Gokou;OUMTANAGA, Souleymane
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • In recent decades, the heterogeneous and dynamic behavior of Internet traffic has placed new demands on the adaptive resource allocation of the optical network infrastructure. However, the advent of multifiber elastic optical networks has led to a higher degree of spectrum fragmentation than conventional flexible grid networks due to the dynamic and random establishment and removal of optical connections. In this paper, we propose heuristic routing and dynamic slot allocation algorithms to minimize spectrum fragmentation and reduce the probability of blocking future connection requests by considering the power consumption in elastic multifiber elastic optical networks.

Application-Centric, Energy-Efficient Network Architecture ACTION, Based on Virtual Optical Slice Core and Deterministic Optical Access Network

  • Ashizawa, Kunitaka;Okamoto, Satoru;Yamanaka, Naoaki;Oki, Eiji;Fumagalli, Andrea;Veeraraghavan, Malathi
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.340-345
    • /
    • 2015
  • The Internet traffic is forecasted to grow at a compound annual rate of 21 % from 2013 to 2018, according to surveys carried out by Cisco [1]. Network resources are significantly over-provisioned in today's networks, and it is quite common to see link utilization in the 30-40% range [2]. Additionally, the multi-media services have widely divergent bandwidth and Quality of Experience (QoE) requirements. Unfortunately, the huge transmission capacity will increase the power consumption of network equipment [3]. Applications Coordinated with Transport, Internet Protocol and Optical Networks (ACTION) [4] has been proposed to realize a multi-QoE, application-centric, and highly energy-efficient network that leverages flexible elastic optical network technologies [5-7]. This paper provides key network technologies for realizing the ACTION, which are a virtual optical slice core network and a Time Division Multiplexing (TDM)-based deterministic active optical access network.

Protection of a Multicast Connection Request in an Elastic Optical Network Using Shared Protection

  • BODJRE, Aka Hugues Felix;ADEPO, Joel;COULIBALY, Adama;BABRI, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Elastic Optical Networks (EONs) allow to solve the high demand for bandwidth due to the increase in the number of internet users and the explosion of multicast applications. To support multicast applications, network operator computes a tree-shaped path, which is a set of optical channels. Generally, the demand for bandwidth on an optical channel is enormous so that, if there is a single fiber failure, it could cause a serious interruption in data transmission and a huge loss of data. To avoid serious interruption in data transmission, the tree-shaped path of a multicast connection may be protected. Several works have been proposed methods to do this. But these works may cause the duplication of some resources after recovery due to a link failure. Therefore, this duplication can lead to inefficient use of network resources. Our work consists to propose a method of protection that eliminates the link that causes duplication so that, the final backup path structure after link failure is a tree. Evaluations and analyses have shown that our method uses less backup resources than methods for protection of a multicast connection.

Multipath Routing and Spectrum Allocation for Network Coding Enabled Elastic Optical Networks

  • Wang, Xin;Gu, Rentao;Ji, Yuefeng
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.456-467
    • /
    • 2017
  • The benefits of network coding in all-optical multicast networks have been widely demonstrated. In this paper, we mainly discuss the multicast service efficiently provisioning problem in the network coding enabled elastic optical networks (EONs). Although most research on routing and spectrum allocation (RSA) has been widely studied in the elastic optical networks (EONs), rare research studies RSA for multicast in the network coding enabled EON, especially considering the time delay constraint. We propose an efficient heuristic algorithm, called Network Coding based Multicast Capable-Multipath Routing and Spectrum Allocation (NCMC-MRSA) to solve the multipath RSA for multicast services in the network coding enabled EON. The well-known layered graph approach is utilized for NCMC-MRSA, and two request ordering strategies are utilized for multiple multicast requests. From the simulation results, we observe that the proposed algorithm NCMC-MRSA performs more efficient spectrum utilization compared with the benchmark algorithms. NCMC-MRSA utilizing the spectrum request balancing (SRB) ordering strategy shows the most efficient spectrum utilization performance among other algorithms in most test networks. Note that we also observe that the efficiency of NCMC-MRSA shows more obvious than the benchmark algorithm in large networks. We also conduct the performance comparisons of two request ordering strategies for NCMC-MRSA. Besides, we also evaluate the impact of the number of the linkdisjoint parallel w paths on the spectrum utilization performance of the proposed algorithm NCMC-MRSA. It is interesting to find that the change of the parameter w in a certain range has a significant impact on the performance of NCMC-MRSA. As the parameter w increases to a certain value, the performances of NCMC-MRSA cannot be affected by the change of w any more.

A Study on the Motion Mechanism of Multi-Axis Ultra Precision Stage for Optical Element Alignment (광소자 정렬용 극초정밀 다축 스테이지의 구동 메커니즘에 관한 연구)

  • Jeong Sang-hwa;Kim Gwang-ho;Cha Kyoung-rae;Lee Kyoung-hyoung;Song Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The communication through optical fiber is taking an important role of the expansion of communication network with excellent transmitting rate and quality. As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement of the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.