• Title/Summary/Keyword: Elastic body

Search Result 526, Processing Time 0.031 seconds

Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)

  • Seng, Sopheak;Jensen, Jorgen Juncher;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1024-1040
    • /
    • 2014
  • The theoretical background and a numerical solution procedure for a time domain hydroelastic code are presented in this paper. The code combines a VOF-based free surface flow solver with a flexible body motion solver where the body linear elastic deformation is described by a modal superposition of dry mode shapes expressed in a local floating frame of reference. These mode shapes can be obtained from any finite element code. The floating frame undergoes a pseudo rigid-body motion which allows for a large rigid body translation and rotation and fully preserves the coupling with the local structural deformation. The formulation relies on the ability of the flow solver to provide the total fluid action on the body including e.g. the viscous forces, hydrostatic and hydrodynamic forces, slamming forces and the fluid damping. A numerical simulation of a flexible barge is provided and compared to experiments to show that the VOF-based flow solver has this ability and the code has the potential to predict the global hydroelastic responses accurately.

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

Aggregate shape influence on the fracture behaviour of concrete

  • Azevedo, N.Monteiro;Lemos, J.V.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.411-427
    • /
    • 2006
  • The Discrete Element Method, DEM, is increasingly used in fracture studies of non-homogeneous continuous media, such as rock and concrete. A 2D circular rigid DEM formulation, developed to model concrete, has been adopted. A procedure developed to generate aggregate particles with a given aspect ratio and shape is presented. The aggregate particles are modelled with macroparticles formed by a group of circular particles that behave as a rigid body. Uniaxial tensile and compression tests performed with circular and non-circular aggregates, with a given aspect ratio, have shown similar values of fracture toughness when adopting uniform strength and elastic properties for all the contacts. Non-circular aggregate assemblies are shown to have higher fracture toughness when different strength and elastic properties are set for the matrix and for the aggregate/matrix contacts.

Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface (시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

A Study on the Ride Improvement of an Escalator Using Flexible Body Dynamics Model (유연체 동력학모델을 이용한 에스컬레이터의 승차감 개선에 관한 연구)

  • 박찬종;권이석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.135-142
    • /
    • 2000
  • In this paper, 3-dimensional numerical model of an escalator is developed to study the vibration characteristics. This proposed model is able to consider the elastic deformation of the frame during transient dynamic analysis. Deformation modes which are used to calculate the elastic deformation are selected from the FE model analysis. Because low frequency vibration is very important to the ride quality of fore/aft direction, low frequency deformation modes of the frame below 20Hz are considered. To show validity of this dynamics model, longitudinal acceleration of a step is compared with test data in frequency domain. Then robust design technique is applied to determine important design factors and improve ride quality with small number of experiments.

  • PDF

PZT membrane Piezoelectric Traveling Wave Motor

  • xin, Shen-De;an, Zhang-Bao;Lu jinan-guo;qing, Yang-Gen;yuan, Wang-Wei
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.89-95
    • /
    • 1997
  • A new type of piexoelectric membrane traveling wave motor has been designed and forbricated. The small motor is composed by the stator which is the combination of annular/circular membrane and metal elastic base using as the common electrode at some time and the rotor which is placed on the metal elastic body. Thus the motor structure is simple and easy to fabricate. The material of a piezoelectric membrane is fabricated by sol-gel method or wear-down method. A piezoelectric traveling wave motor has been fabricated with the stator diameter 8mm The total thickness of the stator is 350$\mu$m. Under the alternative excitation voltage 10-12V the revolving speed of the rotor is more than 100RPM.

  • PDF

Analysis of body sliding along cable

  • Kozar, Ivica;Malic, Neira Toric
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.291-304
    • /
    • 2014
  • Paper discusess a dynamic engineering problem of a mass attached to a pendulum sliding along a cable. In this problem the pendulum mass and the cable are coupled together in a model described by a system of differential algebraic equations (DAE). In the paper we have presented formulation of the system of differential equations that models the problem and determination of the initial conditions. The developed model is general in a sense of free choice of support location, elastic cable properties, pendulum length and inclusion of braking forces. Examples illustrate and validate the model.

A STUDY ON ELASTO-PLASTIC ANALYSIS OF SPHERICAL SHELL BY RIGID ELEMENT METHOD(I) - Theoretical Consideration on Elasto-Plastic Analysis of Spherical Shell - (강체요소법에 의한 구형쉘의 탄소성해석에 관한 연구( I ) - 구형쉘의 탄소성 해석에 관한 이론적 고찰 -)

  • 권택진;한상율;서삼열;박강근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.18-23
    • /
    • 1988
  • This study on the elasto-plastic analysis of spherical shell by rigia element method is classified into two parts : (1) theoretical consideration on elasto-plastic analysis of spherical shell, (2) elastic and elasto-plastic analysis of spherical shell with the open stiff ring. In 1982, Y. Tsuboi proposed the new analytical method which is called the rigid element method, for analyzing the elasto-plastic behavior of wall-type precast concrete structures by applying the concepts of rigid bodies-sprins model (i.e., when structures reach their ultimate state of leading, they may be yield, collapsed ana crushed into pieces, and each part or piece of structures mar move like a rigid body.). In this paper, for improvement and expansion this rigid element method, it is proposed the adaptation equation of rectangular-shaped spherical element and rectangular-shaped spherical bending element developed by present authors, and the analytical procedure for the elastic and the elasto-plastic increment method of structures.

  • PDF

Automatic reentry of deepsea riser by adaptive control (적응제어에 의한 대수심 라이저의 리엔트리)

  • 남동호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.108-118
    • /
    • 1996
  • This paper presents automatic reentry of a deepsea reser by adaptive control. Reentry is one of the major pro blems regarding a deepsea riser. In the reentry operation, the lower end of riser must be accurately positioned over the tarket point on the seabed. But the deepsea riser shows complex elastic response due to flexibility and nonlinearity of the riser dynamics and the required positioning accuracy is high. Moreover, elastic deformation must by controlled for securing structural integrity. In adaptive control, uncertainly known parameters like added mass and drag coefficient in the riser dynamics are identified and control forces at the floating body and the riser are calculated simultaneously. An Adaptive algorithm for MIMO linear discrete time system without requiring a persistent excitation is adopted in this study. The effectiveness of adaptive control logic is tested by numerical simulation and model experiment. The designed control system shows good overall performances, so that the present study can be applied to the control of the deepsea riser.

  • PDF

A Study on Clamping Characteristics of Jaw-wedge for Automatic Jig Vise (자동 지그 바이스용 조오-웨지의 클램핑 특성 연구)

  • Jung, Si-Kyo;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.745-750
    • /
    • 2011
  • A jig vise is a device to clamp workpiece precisely, which is widely used for various machine tools and manufacturing purpose. A new elastic structured jaw-wedge of jig vise is developed, in this paper, so as to satisfy the clamping requirement and the suppression effect of upright movement of workpiece. The advanced design parameters of jaw-wedge are derived step by step considering the stress distribution and the displacement profiles of ANSYS analysis, and it could find the optimum model which shows the uniform displacement profiles and exhibits the non-concentrated stress distribution of jaw neck. As a result, it is ascertained that an jaw-wedge developed in this study is the simple elastic structure which is effective for automatic multiple clamping purpose without the danger of shear crack or bucking of jaw.