• Title/Summary/Keyword: Elastic Structure

Search Result 1,696, Processing Time 0.032 seconds

A Study on the Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성 충돌체간의 충격력 재현에 관한 연구)

  • 조창기;류봉조;이규섭;박영필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.49-58
    • /
    • 2003
  • In this study, the equation of motion of impacting elastic structures was derived through the theory, and the shape control of impact force using correlations of the dynamic characteristics and impact force history between two elastic structures was accomplished. Through numerical analysis and experiments, the classical contact mechanisms were verified, and the effects of the relative motion between impactor and elastic structure on the impact force shape were studied, and then the shape change of impact force depending on the impact position and mode shape of cantilever beam were analyzed. The 2-DOF impactor was designed and used. Reconstruction characteristics of impact force in cantilever beam were reviewed .

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

Linear-Elastic Behavior Analysis of CFTA Girder Filled with High-Strength Concrete (고강도 콘크리트를 적용시킨 CFTA 거더의 선형 탄성 거동분석)

  • Choi, Sung-Woo;Lee, Hak;Jung, Min-Chul;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.511-516
    • /
    • 2008
  • Recently, many researchers are studying a high-strength concrete, composite materials and composite structures to build structures more economic and stable all over the world. For instance, there is CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure to maximize the efficiency of structure and economic. In this study, linear-elastic behavior analysis of CFTA gider filled with high-strength concrete was performed by using ABAQUS 6.5-1 and also the result was analyzed.

  • PDF

The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates

  • Farokhian, Ahmad
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.733-742
    • /
    • 2020
  • Vibration analysis in nanocomposite plate with smart layer is studied in this article. The plate is reinforced by carbon nanotubes where the Mori-Tanaka law is utilized for obtaining the effective characteristic of structure assuming agglomeration effects. The nanocomposite plate is located in elastic medium which is simulated by spring element. The motion equations are derived based on first order shear deformation theory and Hamilton's principle. Utilizing Navier method, the frequency of the structure is calculated and the effects of applied voltage, volume percent and agglomeration of Carbon nanotubes, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with applying negative voltage, the frequency of structure is increased. In addition, the agglomeration of carbon nanotubes reduces the frequency of the nanocomposite plate.

A Study on the Stiffness Characteristic of Repeated Unit Cell Structure (반복되는 구조물의 강성특성 연구)

  • Park, Soo;Seon, Kwang-Sang;Koo, Jae-Mean;Seok, Chang-Sung;Park, Tae-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.111-117
    • /
    • 2010
  • The repeated unit cell structure is applied to the composite, the carbon nano tube and sandwich panel. In this paper, a study on the stiffness of unit cell structure has been performed with the tube support plate of the steam generator. For this, repeated unit cell structure's equivalent elastic constant and poisson's ratio was evaluated through FEA and tests under the elastic range load. Also we evaluated the effect on the specimen size from results.

High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring (변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브)

  • Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

Force Fields and Elastic Properties of Syndiotactic Isoregic Poly(viny1 fluoride) Crystal (Syndiotactic isoregic 폴리비닐플로라이드 결정의 Force Fields 및 Elastic Properties)

  • Geo, G;Lee, Jeong-Gu;Hong, Jin-Hu
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.792-797
    • /
    • 1994
  • Force fields of syndiotactic isoregic PVF crystal have been extracted by optimizing a structure of 2,4,6-trifluoroheptane with ab initio Quantum mechanical method with 6-31G * * basis set, and applied to calculate the structure parameters and elastic constants of the material. The cell parameters turned out to be 5.205$\AA$, of a axis(chain axis), 8.457$\AA$, of b axis and 4.621$\AA$ of c axis. These parameters are in fair agreement with those of the atactic X-ray structure(5.04$\AA$, 8.57$\AA$, and 4.95$\AA$,respectively). The young's modulus of defect free syndiotactic PVF crystal was computed to be 267 GPa comparable to those of polyvinilidene fluoride(277-293 GPa) and polyethylene(264-337 GPa) crystals. Bulk modulus value obtained at optimum geometry is more than twice greater than that obtained at experimental geometry due to large difference of elastic compliance constant (especially Sgj element) at these two different geometries.

  • PDF