• Title/Summary/Keyword: Elastic Stress Field

Search Result 261, Processing Time 0.024 seconds

Stress state around cylindrical cavities in transversally isotropic rock mass

  • Lukic, Dragan C.;Prokic, Aleksandar D.;Brcic, Stanko V.
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.213-233
    • /
    • 2014
  • The present paper is dealing with the investigation of the stress field around the infinitely long cylindrical cavity, of a circular cross section, contained in the transversally isotropic elastic continuum. Investigation is based upon the determination of the stress function that satisfies the biharmonic equation, for the given boundary conditions and for rotationaly symmetric loading. The solution of the partial differential equation of the problem is given in the form of infinite series of Bessel's functions. Determination of the stress-strain field around cavities is a common requirement for estimation of safety of underground rock excavations.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

Analysis and research on teeth thermodynamic coupling contact of gear transmission system

  • Wang, Xigui;Wang, Yongmei;Zhao, Xuezeng;Li, Xinglin
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 2015
  • In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.

Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate (충격하중이 작용하는 평판의 동적 응력 해석)

  • 황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.137-146
    • /
    • 1995
  • Structural stress under shock or impact load is varied with the lapse of time and the structural stress is called stress wave. Propagating longitudinal stress wave is studied in a 2-dimensional plate. A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field at time increment. The longitudinal stress wave is generated by unit step function. According to the finite element analysis results, the longitudinal stress wave propagates to the similar direction of impact load and the front of stress wave propagates with the same speed as analytic solution and the shape of stress field is similar to that of analytic solution. The shear wave is occurred after the longitudinal stress wave and declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is about a half of the longitudinal stress wave. The intensity of shear wave is larger than that of longitudinal stress wave.

  • PDF

A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability (소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구)

  • Ok Myoung-Ryul;Ju Jang-Bog;Lee Jeong-Hwan;Ahn Jeong-Hoon;Nahm Seung Hoon;Lee Hae-Moo;Kwon Dongil
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

Estimations of the C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (I) - Elastic-Creep - (복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (I) - 탄성-크리프 -)

  • Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.949-956
    • /
    • 2009
  • The C(t)-integral describes amplitude of stress and strain rate field near a tip of stationary crack under transient creep condition. Thus the C(t)-integral is a key parameter for the high-temperature crack assessment. Estimation formulae for C(t)-integral of the cracked component operating under mechanical load alone have been provided for decades. However, high temperature structures usually work under combined mechanical and thermal load. And no investigation has provided quantitative estimates for the C(t)-integral under combined mechanical and thermal load. In this study, 3-dimensional finite element analyses were conducted to calculate the C(t)-integral of elastic-creep material under combined mechanical and thermal load. As a result, redistribution time for the crack under combined mechanical and thermal load is re-defined through FE analyses to quantify the C(t)-integral. Estimates of C(t)-integral using this proposed redistribution time agree well with FE analyses results.

General nonlocal solution of the elastic half space loaded by a concentrated force P perpendicular to the boundary

  • Artan, R.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.209-214
    • /
    • 2000
  • The main purpose of this paper is to develop the results introduced in Artan (1996) and to find a general nonlocal linear elastic solution for Boussinesq problem. The general nonlocal solution given Artan (1996) is valid only when the distance to the boundary is greater than one atomic measure. The nonlocal stress field presented in this paper is valid for the whole half plane.

Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe (고온배관 T-부의 응력해석 및 잔여수명평가)

  • Kwon, Yang-Mi;Ma, Young-Wha;Cho, Seong-Wook;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파 해석 (2)

  • Jeon, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1186-1193
    • /
    • 1996
  • The analytic solution of the stress field at creep crack in the presence of grain boundary caviation is to be obtained by solving the governing equation which was derived through the previous paper. The complex integral technique is used to slove the singular integral equation. under the help of the information about stress behaviors at the ends of integral region know by numerical solution. The resultant stress disstribution obtained shows the relaxed crack-tip singularity of $r^{1/2+\theta}$ due to the intervention of cavitation effect, otherwise, it should assumed to be $r^{1/2}$ singularity of linear elastic fracture mechanics with no cavitation.