• Title/Summary/Keyword: Elastic Stress Field

Search Result 261, Processing Time 0.02 seconds

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

Residual fatigue life evaluation method for the cracked components under complex stress fields (복합응력장 하의 균열부재에 대한 잔류피로수명 평가방법)

  • Cho, Chang-Hee;Kim, sang-Tae;Kwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.258-267
    • /
    • 1998
  • This study reviews the influence function method(IFM) for calculating stress intensity factors (SIFs, K) and modifies it to apply for the estimating the residual fatigue life for the cracked components under complex stress fields. An IFM has been developed to analyze SIFs for surface cracks which are subjectedto nonuniformly distributed stresses. Through elastic superposition, the influence function method properly accounts for redistribution of stress as the crack grows through the component. This influence function is unique to the given geometry and independent of the loading. Some examples have been provided to show the effectiveness of the IFM including the distributions of K in a residual stress field. The significant effect of residual stress upon fatigue crack growth in a welded component has been demonstrated with the IFM.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

A Study on the Estimation of Underground Parameters by Coupling of Finite and Boundary Elements (유한요소 - 경계요소 조합에 의한 지반매개변수 추정에 관한 연구)

  • 김문겸;장정범;오금호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.28-34
    • /
    • 1995
  • Behavior of underground structural systems is usually complicated because of various unknown parameters. In order to construct those structural systems safely and economically, exact identification of the system parameters and accurate analysis of the system behaviors are essentially required. In this study, a forward analysis program, which is able to eliminate numerical errors due to far field boundary effect, is developed by coupling finite and boundary elements. In this coupled analysis, boundary elements are used in the semi-infinite domain where stress variation is small, and finite elements in the stress concentration region where material nonlinearity should be considered. Then, a back analysis program which can identify the system parameters is developed using the direct method to be combined with the forward analysis program. The elastic modulus and initial stress, which are most important in the description of the behavior of underground structures, are taken as the system parameters. A simple example is examined 0 show that the method can be used effectively.

  • PDF

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds (차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축)

  • Kim, Soo-Il;Seo, Joo-Won;Yoo, Young-Gyu;Choi, Jun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

Drained cylindrical cavity expansion in K0-consolidated anisotropic soils under biaxial in-situ stresses

  • Cao, Xiaobing;Zhang, Junran;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.493-503
    • /
    • 2022
  • Cavity expansion is a classical problem in the field of solid mechanics with a wide range of applications in geotechnical and petroleum engineering. A drained solution is developed for cylindrical cavity expansion in anisotropic soils under biaxial in-situ stresses using a K0-based anisotropic modified Cam-clay model (K0-AMCC). The problem is formulated by solving differential equations using an auxiliary variable, which provides analytical expressions for the volume and four stress components of the soil around the cylindrical cavity. The solution is validated by comparisons with existing well-developed solutions. The results show that the present solution well captures the cavity expansion responses in anisotropic soils under biaxial in-situ stresses, and removes limiting assumptions that the cylindrical cavity expands under uniform in-situ stress in isotropic soils. The elastic-plastic boundary of the expanding cylindrical cavity in K0-consolidated anisotropic soils under biaxial in-situ stresses is a circle rather than an ellipse in isotropic soils, and the mathematical proof is provided in detail.