• Title/Summary/Keyword: Elastic Soil

Search Result 521, Processing Time 0.022 seconds

3D numerical model for wave-induced seabed response around breakwater heads

  • Zhao, H.Y.;Jeng, D.S.;Zhang, Y.;Zhang, J.S.;Zhang, H.J.;Zhang, C.
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.595-611
    • /
    • 2013
  • This paper presents a three-dimensional (3D) integrated numerical model where the wave-induced pore pressures in a porous seabed around breakwater heads were investigated. Unlike previous research, the Navier-Stokes equation is solved with internal wave generation for the flow model, while Biot's dynamic seabed behaviour is considered in the seabed model. With the present model, a parametric study was conducted to examine the effects of wave and soil characteristics and breakwater configuration on the wave-induced pore pressure around breakwater heads. Based on numerical examples, it was found that the wave-induced pore pressures at breakwater heads are greater than that beneath a breakwater. The wave-induced seabed response around breakwater heads become more important with: (i) a longer wave period; (ii) a seabed with higher permeability and degree of saturation; and (iii) larger angle between the incident waves and breakwater. Furthermore, the relative difference of wave-induced pore pressure between fully-dynamic and quasi-static solutions are larger at breakwater heads than that beneath a breakwater.

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Determination of Equivalent Properties of Composite Foundation Using Elasto-plastic Theory (탄소성 이론을 이용한 복합지반의 등가특성치 예측)

  • 이주형;이상익;김영욱;김병일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.179-187
    • /
    • 2003
  • Vertical reinforcement of soft ground using granular column is a very effective ground improvement technique which is being used fur increasing bearing capacity and decreasing settlement. In this study, the theories of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining elastic properties and shear strength parameter of equivalent ground of composite foundation. The developed equations were verified using the finite element computer program, SAGE CRISP. For validation, finite element analyses were conducted f3r the various different cases including different type of soil and replacement ratios. The results of the analysis show that the proposed equation could determine the properties of equivalent ground material for practical application effectively.

Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$ (지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰)

  • Kim, Dae-Sang;Choi, Chan-Yong;Kim, Seong-Jung;Yu, Jin-Young;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

Nonlinear flexibility-based beam element on Winkler-Pasternak foundation

  • Sae-Long, Worathep;Limkatanyu, Suchart;Hansapinyo, Chayanon;Prachasaree, Woraphot;Rungamornrat, Jaroon;Kwon, Minho
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.371-388
    • /
    • 2021
  • A novel flexibility-based beam-foundation model for inelastic analyses of beams resting on foundation is presented in this paper. To model the deformability of supporting foundation media, the Winkler-Pasternak foundation model is adopted. Following the derivation of basic equations of the problem (strong form), the flexibility-based finite beam-foundation element (weak form) is formulated within the framework of the matrix virtual force principle. Through equilibrated force shape functions, the internal force fields are related to the element force degrees of freedom. Tonti's diagrams are adopted to present both strong and weak forms of the problem. Three numerical simulations are employed to assess validity and to show effectiveness of the proposed flexibility-based beam-foundation model. The first two simulations focus on elastic beam-foundation systems while the last simulation emphasizes on an inelastic beam-foundation system. The influences of the adopted foundation model to represent the underlying foundation medium are also discussed.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Zakaria Belabed;Abdelmoumen Anis Bousahla;Mohamed Abdelaziz Salem;Khaled Mohamed Khedher
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.297-305
    • /
    • 2024
  • This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Stabilization Method by Timber Pile for Fill Slope Failure on Forest Road (임도(林道) 성토사면(盛土斜面)의 소경재(小經材) 붕괴억지공법(崩壞抑止工法)에 관한 연구(硏究))

  • Ji, Byoung Yun;Jung, Do Hyun;Kim, Jong Yoon;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • This study was carried out to to execute the slope stabilization scheme of soil and weathered rock slope with forest road generating slope failure due to heavy rainfall. The timber piled stabilization by Shin's formulae for landslide-restraint pile as elastically supported elastic columns under distributed loads was applied on the unstable fill slope. The results obtained were summarized as follows: The timber piled stabilization was applied for unstable slopes such as the soil slope and weathered rock slope of metamorphic rock regions. The results indicated that pile interval of 0.5~1.0m was appropriate in the case of high hillslope gradients and 0.7~2.0m in the case of low hillslope gradients of soil slope, and Pile interval of 0.5~1.3m in the case of high hillslope gradients and 0.7~2.0m in the case of low hillslope gradients of weathered rock slope. Recommended pile length was around 4m for pile 1, 2 and 3, and nearly 3m for pile 4 and 5.

  • PDF