• Title/Summary/Keyword: Elastic Soil

Search Result 521, Processing Time 0.024 seconds

An Analysis of the Farm Silo Supported by Ground (지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구(IV) -제 4 보 관행설계법과의 비교)

  • 조진구;조현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.44-54
    • /
    • 1988
  • This study was carried out to investigate the applicability of the conventional design method for ground supported circular cylindrical shell structures. For this purpose, the ensiled farm silo was adopted as a model structures. Herein, the conventional design method was based on the assumption that such structures are clamped at the bottom edges or the ground pressure is independent of the deflection at the surface. In the present paper, the applicability of above assumption was checked out by comparison with an exact method considering soil-structure interaction. Some results of numerical calculation show us ; When the ground is very hard, for example Winkler's constant k is larger than 100 kg / cm$^2$ / cm, or the bottom plate of structures has a infinitely stiffness, for example the bottom plate thickness is larger than 100 cm, the sectional forces, obtained from the conventional method at any wall of structures resting on an elastic foundation, can used for design purpose. Therefore, if the above condition is satisfied then the conventional assumptions can be justified for the design purpose. In this case, the assumption that such structures are fixed at the lower edges was more realistic than the assumption that the reaction pressure acting on structures is uniformly disributed since the accuracy of results of the analysis by the former assumption was higher than that obtained from the latter assumption. But the sectional forces in the bottom plate resting on ground directly could not be evaluate correctly by the conventional method.

  • PDF

A Pilot Study of Bender Elements in Stiffness Measurements of Civil Engineering Materials (벤더 엘리멘트를 이용한 토목재료의 강성측정에 대한 적용성 연구)

  • Mok, Young-Jin;Jung, Jae-Woo;Jang, In-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.308-319
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy between mechanical and electrical forms. Bender-elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender-elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender-elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements is very promising.

  • PDF

A Study on Reinforcement Effectiveness for Railway Soft Roadbed by Using Geotextiles (토목섬유를 활용한 철도 연약노반에서의 보강효과)

  • Lee, Jin-Wook;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1546-1553
    • /
    • 2005
  • In this study, geotextiles was applied on the selected track-bed, which is relatively economical and efficient way to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chung-buk lines in Korea were selected to investigate the state of track and roadbed. And three places were chosen among 1,700 spots where mud-pumping was frequently occurred and maintenance required. At the curved section with radius of 500m between Mock-haeng and Dong-ryang, we divided this testing site into 5 section and 4 different types of geotextile were installed and left the last section with no reinforcement. Total length of the test site was 200m and individual length of each site was 40 m. In order to understand the state and the strength of prepared roadbed, stiffness and physical properties of the roadbed soil were evaluated and analyzed. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, lateral force and earth pressures were investigated.

  • PDF

A Study on Reinforcement Effectiveness for Railway Soft Roadbed through Long-Term Instrumentation on the Field Test (현장부설시험구간에서의 장기계측을 통한 토목섬유 보강효과)

  • Choi Chan-Yong;Lee Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.734-743
    • /
    • 2005
  • In this study, geotextiles was applied on the selected track-bed, which is relatively economical and efficient way to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chung-La lines in Korea were selected to investigate the state of track and roadbed. And three places were chosen among 1,700 spots where mud-pumping was frequently occurred and maintenance required. At the curved section with radius of 500m between Mock-haeng and Dong-ryang, we divided this testing site into 5 section and 4 different types of geotextile were installed and left the last section with no reinforcement. Total length of the test site was 200m and individual length of each site was 40 m. In order to understand the state and the strength of prepared roadbed, stiffness and physical properties of the roadbed soil were evaluated and analyzed. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, lateral force and earth pressures were investigated.

  • PDF

Lateral Displacement Analysis of Concrete Electric Pole Foundation Grounds (배전용 콘크리트전주 기초지반의 횡방향변위 분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.42-49
    • /
    • 2009
  • The effects of various forces acting on concrete pole are analyzed using finite element method how the forces affect on ground displacement. The soil types, wind load location of anchor block embedded depth of pole, and distance between poles are varied to find out effects on lateral displacement. Anchor block is effective when it is located at 1/4 of embedded depth The displacement is decreases as elastic modulus increases. Concrete reinforcement for loosened ground is necessary for double poles because double poles cause large excavation. When embedded depth ratio decrease, lateral displacement increase as closer to ground surface. Large embedded depth is effective to reduce lateral displacement, and the distance between poles is not much large factor.

Application of Response Spectrum Method to a Bridge subjected to Multiple Support Excitation (다지점(多支點) 지진하중(地震荷重) 받는 교량(橋梁)에 대한 응답(應答) 스펙트럼법(法)의 적용(適用))

  • Kang, Kee Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 1990
  • The dynamic behaviour of a four-span continuous girder railway bridge subjected to multiple support excitations is investigated using the response spectrum method. Small-amplitude oscillations and linear-elastic material behaviour are assumed. Soil-structure interaction effects are disregarded and only the out-of-plane response of the bridge is considered. The results of the response spectrum analysis are compared with those from a time history analysis. Different combination rules for the superposition of modal maxima as well as supports are employed, such as square-root-of-sum-squares, double sum and p-norm methods.

  • PDF

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

A study of Elastic Modulus Tests for Reinforced Subgrade Soil with Cement (시멘트를 첨가한 강화노상토의 탄성계수 평가법)

  • Lee, Kwan-Ho;Jang, Tae-Young;Kim, Seong-Kyum;Kim, Jeong-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.288-291
    • /
    • 2011
  • 최근 아스팔트 혼합물의 배합설계법은 기존에 주로 사용하던 빔 및 마샬 배합설계법에서 수퍼페이브 배합설계법으로 점차적으로 바뀌고 있는 추세이다. 수퍼페이브의 배합설계과정에서 중요한 사항 중의 하나는 선회다짐기를 사용하는 다짐방법이다. 아스팔트 포장은 노상 위에 보조기층, 기층, 표층의 순으로 구성되는데 노상은 포장 아래 약 1.0 m의 흙부분으로 포장과 일체로 구성되며 포장체에 작용하는 하중을 최종적으로 지지하는 층이다. 따라서, 수퍼페이브 배합설계법에서 사용하는 선회다짐기를 포장과 일체로 구성되는 노상의 다짐시험에도 적용한다면 각각의 포장층에 같은 원리의 다짐방법을 적용한다는 큰 의미가 있을 것으로 판단된다. 본 논문에서는 일반 노상토에 시멘트와 플라이애시를 첨가한 강화노상토를 선회다짐기를 이용하여 시편을 제작하였고, 각 시편에 대한 탄성계수를 1축압축시험, 공진주시험, LFWD를 이용해 각각 측정하여 각 결과물들의 상관관계를 추정하고자 한다.

  • PDF

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.