• Title/Summary/Keyword: Elastic Shear Modulus

검색결과 296건 처리시간 0.022초

Prediction of the Elastic Modulus of Improved Soil Using the Flat TDR System (판형 TDR 시스템을 이용한 개량지반의 탄성계수 예측)

  • Song, Minwoo;Kim, Wanmin;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • 제15권3호
    • /
    • pp.77-85
    • /
    • 2016
  • This study was conducted to solve the problem such as damage of completed compaction ground using the conventional compaction control method. In this study, a TDR system equipped with a flat type probe has been developed. Also, the Piezoelectric stack, which is an instrument for measuring the elastic wave on the ground, has been added to the developed flat type probe. In this study, the strength variation of reinforced soil with time was determined by using the TDR system. The value of compression and shear modulus increased from 198.65MPa to 541.80MPa and from 125.55MPa to 302.02MPa with time, respectively. Based on the test results, it has been confirmed that the developed TDR system can be used as reinforced effect analysis of soil and compaction control.

Buckling of T-Shaped Composite Columns (T형 복합재료 기둥의 좌굴)

  • Lee Seungsik;Back Sung-Yong
    • Journal of the Korean Society for Railway
    • /
    • 제9권1호
    • /
    • pp.57-62
    • /
    • 2006
  • Composite thin-walled members for civil engineering application are mainly produced by pultrusion technique, and they are generally made of a polymeric resin system reinforced by E-glass fibers due to economical reason. This material combination results in low elastic moduli of the composite materials and makes the design of composite members to be governed by stability limit state. Therefore the buckling behavior of composite thin-walled members was experimentally investigated in the present study. Axial compression was applied on each specimens by a hydraulic ram and knife edge fixtures were placed at both ends to simulate simple boundary condition. Axial compression, lateral displacements and twisting at the mid-height of each specimen were measured by a set of transducers during buckling test. The experimental buckling loads were compared with analytical results obtained through isotropic formulas. In the calculation of analytical results, elastic properties such as Young's modulus(E) and shear modulus(G) were replaced with EL and GLT obtained from coupon tests, respectively.

Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model (한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • 제29권3호
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations

  • Soltani, Kheira;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Kaci, Abdelhakim;Benguediab, Mohamed;Tounsi, Abdelouahed;Alhodaly, Mohammed Sh
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.13-29
    • /
    • 2019
  • This work presents the buckling investigation of functionally graded plates resting on two parameter elastic foundations by using a new hyperbolic plate theory. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only four unknowns and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. The governing equations are derived using Hamilton's principle and solved using Navier's steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. The effects of various parameters like the Winkler and Pasternak modulus coefficients, inhomogeneity parameter, aspect ratio and thickness ratio on the behaviour of the functionally graded plates are studied. It can be concluded that the present theory is not only accurate but also simple in predicting the critical buckling loads of functionally graded plates on elastic foundation.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure

  • Chen, Bingzhuo;Yang, Lu;Lu, Zhicen;Meng, Hongliang;Wu, Xinyi;Chen, Chen;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.313-323
    • /
    • 2019
  • PURPOSE. Shear bond strength (SBS) test is the most commonly used method for evaluating resin bond strength of zirconia, but SBS results vary among different studies even when evaluating the same bonding strategy. The purpose of this study was to promote standardization of the SBS test in evaluating zirconia ceramic bonding and to investigate factors that may affect the SBS value of a zirconia/resin cement/composite resin bonding specimen. MATERIALS AND METHODS. The zirconia/resin cement/composite resin bonding specimens were used to simulate loading with a shear force by the three-dimensional finite element (3D FE) modeling, in which stress distribution under uniform/non-uniform load, and different resin cement thickness and different elastic modulus of resin composite were analyzed. In vitro SBS test was also performed to validate the results of 3D FE analysis. RESULTS. The loading flat width was an important affecting factor. 3D FE analysis also showed that differences in resin cement layer thickness and resin composite would lead to the variations of stress accumulation area. The SBS test result showed that the load for preparing a SBS specimen is negatively correlated with the resin cement thickness and positively correlated with SBS values. CONCLUSION. When preparing a SBS specimen for evaluating bond performance, the load flat width, the load applied during cementation, and the different composite resins used affect the SBS results and therefore should be standardized.