• Title/Summary/Keyword: Elastic Impact

Search Result 412, Processing Time 0.064 seconds

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

Dynamic Fracture Analysis of High-speed Impact on Granite with Peridynamic Plasticity (페리다이나믹 소성 모델을 통한 화강암의 고속 충돌 파괴 해석)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson's ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Simulation of Explosion of the Semi-Fluid with Strong Elasticity Applying Coulomb-Mohr Theory (쿨롱-모어 이론을 이용한 강탄성 반유동체 폭발 시뮬레이션)

  • Kim, Gyeong-Su;Sung, Su-Kyung;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.143-152
    • /
    • 2015
  • Unlike simulating general 'particle-based fluid explosion', simulating fluid with elasticity requires various experimental methods in order to show the realistic deformation of the matter. The existing studies on particle-based viscoelastic fluid only focused on matters' plastic deformation which can be found in mud or paint, based on the maximum distortion energy theory and maximum shear stress theory. However, these former researches could not simulate the brittle deformation which can be seen from silicon or highly elastic rubber when great external forces above limits are applied. This study suggests a brittle simulation method based on the Coulomb-Mohr theory, the idea that a yield occurs when maximum stress on a matter reaches to its rupture stress. This theory has a significant difference from the existing particle-based simulations which measures the forces on a matter by length or volume. Using a strong-elastic semifluid which Coulomb-Mohr theory is applied, realistic deformation process of a matter was observed as its forced surface reached to the rupture stress. When semifluid hit the ground, the impact of deformation can be explained by using Coulomb-Mohr theory.

이온산란분광법을 이용한 Si(113)의 표면 구조 변화 관찰

  • 조영준;최재운;강희재
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.148-148
    • /
    • 2000
  • 지금까지 반도체 표면에 대한 연구는 주로 (1000, (111) 표면 등 낮은 밀러 지표를 가진 표면에 대해 이루어져 왔다. 이에 반해 밀러 지표가 높은 Si 면은 불안정하고, 가열하면 다른 표면, 즉 지표가 낮은 면으로 재배열하는 경향이 있는 것으로 알려져 있는데 아직 이들 높은 밀러 지표를 가진 표면에 대한 연구는 미미한 상태이다. 그러나, Si(113)면은 밀러 지표가 높으면서도 안정하기 때문에 Si(113)의 구조를 정확하게 알 수 있다면 밀러 지표가 낮은 Si 표면이 안정한 이유를 이해할 수 있을 것이다. 따라서 본 연구에서는 TOF-CAICISS 장치(Time of Flight - CoAxial Impact Collision Ion Scattering Spectroscopy) 장비와 RHEED(Reflection High Energy Electron Diffrction)를 이용하여 Si(113) 표면의 구조와 Si(113) 표면의 온도에 따른 구조 변화를 관찰하였다. TOF-CAICISS 실험결과를 보면 (3$\times$2)에서 (3$\times$1)으로 상변환하면서 Si(113) 표면에 오각형을 이루는 dimer 원자들과 adatom 원자들간의 높이차가 작아짐을 알 수 있다. RHEED 실험결과와 전산 모사 결과로부터 상온에서 Si(113)(3$\times$2) 구조를 가지다가 45$0^{\circ}C$~50$0^{\circ}C$에서 Si(113) (3$\times$1) 구조로 상변환한다는 것을 알 수 있다. 그러나, 아직 상전이 메카니즘은 명확하게 밝혀지지 않았다. 실험결과를 전산 모사와 비교함으로써 Si(113) 표면에 [33]방향으로 이온빔을 입사시켰을 경우 dabrowski 모델과 Ranke AI 모델이 적합하지 않다는 것을 알 수 있다./TEX>, shower head의 온도는 $65^{\circ}C$로 설정하였다. 증착된 Cu 박막은 SEM, XRD, AFM를 통해 제작된 박막의 특성을 비교.분석하였다. 초기 plasma 처리를 한 경우에는 그림 1에서와 같이 현저히 증가한 초기 구리 입자들이 관측되었으며, 이는 도상 표면에 활성화된 catalytic site의 증가에 기인한다고 보여진다. 이러한 특성은 Cu films의 성장률을 향상시키고, 또한 voids를 줄여 전기적 성질 및 surface morphology를 향상시키는 것으로 나타났다. 결과 필름의 잔류 응력과 biaxial elastic modulus는 필름의 두께가 감소함에 따라 감소하는 경향을 나타냈으며, 같은 두께의 필름인 경우, 식각 깊이에 따른 biaxial elastic modulus 의 변화를 통해 최적의 식각 깊이를 알 수 있었다.도의 값을 나타내었으며 X-선 회절 data로부터 분석한 박막의 변형은 증온도에 따라 7.2%에서 0.04%로 감소하였고 이 이경향은 유전손실은 감소경향과 일치하였다.는 현저하게 향상되었다. 그 원인은 SB power의 인가에 의해 활성화된 precursor 분자들이 큰 에너지를 가지고 기판에 유입되어 치밀한 박막이 형성되었기 때문으로 사료된다.을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대체할 수 있다.

  • PDF

Estimating the Elasticity of Crude Oil Demand in Korea (한국 원유수요의 탄력성 추정)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.37 no.3
    • /
    • pp.65-81
    • /
    • 2018
  • This study estimated the long-run and the short-run price and income elasticity of crude oil demand by using the ARDL model in Korea. First, the long-run cointegration relationship existed between crude oil demand and price or income in the ARDL-bounds tests. Second, the long-run own price, the cross price elasticity and the income elasticity were both statistically significant elastic and sensitive in the ARDL. Third, there was autocorrelation of the residuals, but no misspecification errors and heteroscedasticity, and then the residuals showed a normal distribution. And the CUSUM & CUSUMSQ tests showed that the coefficients were stable. Fourth, the short-run own price, the cross price elasticity and the income elasticity were both statistically significant elastic and sensitive in the ARDL-RECM. The ECM with the short-run dynamics showed rapid adjustments in the long-run equilibrium of oil demand after the economic crisis. In the short-run, the sensitivity of crude oil demand to price and income changes has moved in the same direction as the long-run case. Korea, depending too much on foreign crude oil, is vulnerable to the shocks of oil prices, so rising oil prices can certainly have a negative impact on Korea's trade balance. And the elasticity of long-run oil prices may help to control and manage Korea's oil demand. The government needs to strengthen monitoring of the country's policies and market trends related to crude oil, establish strategies to customize national policies and market conditions, and strengthen active market dominance efforts through pioneering new market and diversification.