• Title/Summary/Keyword: Elastic Impact

Search Result 422, Processing Time 0.031 seconds

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Influence of Die Geometry on Die-tip Buildup in Plastic Extrusion (플라스틱 파이프 압출시 금형 형상이 다이립 집적에 미치는 영향)

  • 서영성;최선웅
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.486-493
    • /
    • 2000
  • Extrusion die-lip buildup has direct and negative impact on the properties of the final product. At the present time there is no absolute method of die-lip prevention. However, a Periodical shut down of extrusion line for the removal has been the general practice throughout the industry in concern. In this study the die-lip buildup was Investigated with a particular attention paid to the influence of die exit geometry and dimensions on the stresses produced at the point of die exit. To demonstrate the relationship between the stress state and the magnitude of the die-lip buildup, a method of virtual manufacturing was performed, assuming elastic-plastic material behavior for the high-density polyethylene under investigation. The overall numerical results suggested that the longer the die-land and/or the smaller the areal reduction of the die would reduce the tendency for the die-lip formation. Similarly, haying a fillet around the circumferential edge of the die exit would be favorable in decreasing the die-lip buildup.

  • PDF

Finite Element Analysis to Micro-structure with Negative Poisson's ratio (음의 프와송 비를 갖는 미세 구조체에 대한 유한요소해석)

  • 이문규;최귀원;최재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.694-697
    • /
    • 2003
  • Materials with specific micro-structural shape can exhibit negative Poisson's ratio. These materials can be widely used in structural applications because of their high resilience and resistance to impact. Specially, in the field of artificial implant's material, they have many potential applications. In this study, we investigated the Poisson's ratio and the ratio(E$_{e}$/E) of the elastic modulus of rotational particle structures based on structural design variables using finite element method. As the ratio of fibril's length to particle's diameter increased and the ratio of fibril's diameter to fibril's length decreased fixing the fibril's angle with 45 degree. the negative Poisson effect of rotational particle structures increased. The ratio of elastic modulus of these structures decreased with Poisson's ratio. The results show the reasonable values as compared with the previous analytical results.s.

  • PDF

An elastic contact algorithm in SPH by virtual work principle (SPH에 가상일 원리를 적용한 탄성 접촉 알고리즘)

  • Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1346-1351
    • /
    • 2003
  • There is few research about contact problem in SPH because it is primarily suitable to analyze the large deformation problem. However, an elasto-plastic problem with small deformation need to be considered about contact characteristics. The numerical formulating methods for SPH is induced to be able to obtain solutions based on a variational method in contact problem. The contact algorithm presented is applied to the elastic impact problem in 1D and 2D. The results show thai an imaginary tension and a numerical instability which happen in impacting between different materials can be removed and contact forces which could not have been calculated are able to obtain.

  • PDF

Benchmark test of large scale offshore wind turbine with jacket foundation

  • Baek, Jaeha;Park, Hyunchul;Shi, Wei;Lee, Jusang;Lee, Jongsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Nowadays, offshore wind energy experiences a rapid development because of its wind condition and no noise impact problem. Different from Europe, offshore wind is just started in Asia. More work and research are needed in Korea. In this work, a three-bladed upwind variable speed pitch controlled 5MW wind turbine on a jacket support structure is used. During the simulation, several design load cases are investigated in two different fully coupled aero-hydro-servo-elastic codes. Some critical loads on the foundation are compared and analyzed.

  • PDF

The Behaviour of Track/Railway Bridge according to Pad Stiffness of Fastener System on Concrete Slab Track (콘크리트슬래브궤도 체결장치의 패드강성에 따른 궤도/교량의 거동 분석)

  • Lee, Jun-Ho;Sung, Deok-Yong;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1628-1636
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. But elastic pad becomes superannuated due to repeated train operation. After all, it brings change of pad stiffness and it could directly act on track and bridge as load transmission and impact force. In this study, we carried out laboratory test changing pad stiffness after making a model of 15m bridge and laying concrete slab track. Also, we carried out static and dynamic behaviors test(stress, natural frequency, damping ratio, vibrational acceleration, deflection) of bridge and track and experimentally analyzed them by change of elastic pad stiffness on rail fastener.

  • PDF

Numerical Analysis of NDT Using Elastic Stress Waves in Concrete Lining (터널 라이닝내부에서 전파되는 탄성응력파를 이용한 수치해석적 비파괴검사)

  • 김문겸;이재영
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 1998
  • 지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.

  • PDF

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Relation between J and CMOD in dynamic loaded 3-point bend specimens (동적 하중을 받는 3점 굽힘 시험편들에서의 J와 CMOD와의 관계)

  • Lee, Ouk-S.;Cha, Il-Nam;Cho, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • Numerical caiculations are made in order to find a possible relation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directiy from photographs taken during dynamic experiments.

  • PDF