• Title/Summary/Keyword: Elastic Impact

Search Result 418, Processing Time 0.025 seconds

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

A Study of floor impact noise reduction in a steel structure by using the floating floor (Floating floor를 이용한 강구조물의 바닥충격음 저감에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, floor impact noise reduction in a steel structure is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN(Structure-borne Noise) and floor damping are measured to study the effect of floating floor. structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

  • PDF

Correlation between Dynamic Characteristics of Isolation Material and Impact Noise Reduction of Light-weight Impact Source (충격음 저감재의 동특성과 실험실 경량충격음레벨 저감량의 상관관계)

  • 이주원;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.191-195
    • /
    • 2003
  • 충격음 저감재의 동탄성계수와 감쇠계수는 차단성능을 평가하는데 있어 중요한 물성치가 된다. 저감재의 동탄성계수는 뜬바닥구조의 고유진동수를 결정짓게 되며, 저감재의 동탄성계수가 높을수록, 즉 고유진동수가 높아짐에 따라 실험실 경량충격음레벨 저감량은 지수함수적으로 감소됨을 실험을 통해 알 수 있다. 또한, 저감재를 포함한 뜬바닥구조를 1자유도 진동계로 가정한 이론값과 실험실 경량충격음레벨 저감량의 결과가 비교적 잘 일치하는 것으로 나타났으며, 이 때 감쇠계수의 영향은 반드시 고려되어야 한다.

  • PDF

An Investigation on the Method of Tooth Modification for Noise Suppression of Gear Transmission (기어 변속기의 소음저감을 위한 치형수정 설정방법에 관한 고찰)

  • Bae, M.H.;Park, N.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.243-251
    • /
    • 1998
  • A method of establishing the tooth modification for gear transmission of vehicles to reduce gear whine noise, caused by tooth impact phenomenon of mating gear, is introduced. The major causes of tooth impact are due to the deflections of gear teeth and shafts of transmission with the loaded condition including various kinds of manufacturing errors. The theoretical shape of tooth surface to avoid tooth impact is derived by the amount of elastic deformation of gear teeth and shaft and overall manufacturing error of machine tool. The surface function is converted with respect to the conventional commercial data usually communicated to the gear inspection system. The proposed method is applied to the gearbox of four wheel drive vehicle and shows the gear whine noise decreased to the 8 dB in the sound level.

  • PDF

Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment (고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도)

  • Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Rockfall Impact Analysis of Typical Roadway Using Finite Element Simulation

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.92-96
    • /
    • 2012
  • This study presents a rockfall impact analysis of a typical roadway. Dynamic finite element analyses using ANSYS AUTODYN are conducted to determine the effect of the drop heights (5 m, 10 m) on the damage to a roadway model. The Rockfall is modeled as a spherical shape with a weight of 400 kg, and each drop height is converted to a corresponding impact velocity to save computational time. The roadway model is comprised of an asphalt layer, base layer, sub-base layer, and sub-grade layer. In this paper, the asphalt is modeled using a linear elastic model. The base layer, sub-base layer, and sub-grade layer are modeled using a Mohr-Coulomb model. From the analyses, the effects of the drop height on the damages and stresses are examined and discussed.

The effect of material behavior of blasted muck on the impact force applied on a protector (발파 버력의 재료거동이 프로텍터에 작용하는 충격하중에 미치는 영향)

  • Kim, Woong-Ku;Jin, Byeong-Moo;Baek, Ki-Hyun;Seo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.261-275
    • /
    • 2011
  • To maintain the traffic flow during tunnel expansion, cars must be protected from falling rocks during excavation and to do so, a protector has to be installed inside the tunnel before beginning the excavation. In Korea, tunnel expansion by blasting rather than by mechanical excavation has been widely achieved. For this reason, a series of numerical analysis were performed to analyze the characteristics of impact load according to material behaviour of blasted rock by using Explicit FEA program. From the numerical results, it is found that the impact loads when rock is assumed as an elastic-plastic material appear to be only 7~12% compared with that when it is elastic.

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

Peridynamic Impact Fracture Analysis of Multilayered Glass with Nonlocal Ghost Interlayer Model (비국부 층간 결합 모델을 고려한 다중적층 유리의 페리다이나믹 충돌 파괴 해석)

  • Ha, Youn Doh;An, Tae Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.373-380
    • /
    • 2018
  • We present the peridynamic dynamic fracture analysis to solve impact fracturing of multilayered glass impacted by a high-velocity object. In the most practical multilayered glass structures, main layers are glued by thin elastic masking films. Thus, it is difficult and expensive to construct the numerical model for such a multilayered structure. In this paper, we employ efficient numerical modeling of multilayered structures with a nonlocal ghost interlayer model in which ghost particles are distributed between main layers and they are interacting with each other in peridynamic way. We also consider a simple nonlocal contact condition in peridynamic frameworks to solve impact and penetration of the high-velocity impactor to the multilayered structure. Finally we can confirm the fracture capabilities of the method using a multilayered glass model in which 7 glass layers and a single elastic backing layer are affixed by polyvinyl butyral films.