• 제목/요약/키워드: Elastic Deformation Limit

검색결과 65건 처리시간 0.02초

Ti-Ni계 형상기억 합금의 피로특성에 관한 연구 (A Study on the Fatigue Properties of Ti-Ni Shape Memory Alloys)

  • S.Y Kim;S. Miyazaki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.482-490
    • /
    • 1997
  • The effects of strain amplitude. test temperature and stress on the fatigue properties for Ti-Ni wires were investigated using a rotary bending fatigue tester specially designed for wires. The fatigue test results were discussed in connection with the static tensile properties. The DSC measurement was conducted after fatigue test in order to clarify the change of transformation behavior due to the progress of fatigue. Under the temperature below or near the Af, the strain amplitude($\varepsilon_a$)-failure life (Nf) curve showed to be composed of three straight lines with two turning points. Of the 2 turning points, the upper one was coincident with the elastic limit strain and the lower one with the proportional limit strain. With rising of the test temperature above Af, the pattern of $\varepsilon_a$-Nf curve changed gradually to composition of 2 straight lines. The $\varepsilon_a$-Nf curve shifted depending on test temperature. In the short and medium life zones, the higher the temperature was, the shorter the fatigue life. However, in the long life zone, above the Af temperature, the fatigue life was not affected by the temperature. The transformation enthalpy measured after fatigue test was dependent on Nf, $\varepsilon_a$, and test temperature.

  • PDF

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.

준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동 (Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading)

  • 신형섭;고동균;오상엽
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

FOA (first-order-analysis) model of an expandable lattice structure for vehicle crash energy absorption of an inflatable morphing body

  • Lee, Dong-Wook;Ma, Zheng-Dong;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.617-632
    • /
    • 2011
  • A concept of crash energy absorbing (CEA) lattice structure for an inflatable morphing vehicle body (Lee et al. 2008) has been investigated as a method of providing rigidity and energy absorption capability during a vehicular collision (Lee et al. 2007). A modified analytical model for the CEA lattice structure design is described in this paper. The modification of the analytic model was made with a stiffness approach for the elastic region and updated plastic limit analysis with a pure plastic bending deformation concept and amended elongation factors for the plastic region. The proposed CEA structure is composed of a morphing lattice structure with movable thin-walled members for morphing purposes, members that will be locked in designated positions either before or during the crash. What will be described here is how to model the CEA structure analytically based on the energy absorbed by the CEA structure.

원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석 (Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld)

  • 김상현;한재준;정진택;김윤재
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1379-1386
    • /
    • 2013
  • 본 논문에서는 용접부 중앙에 원주방향 관통균열이 있는 V-그루브 맞대기 용접 배관의 한계하중 해석을 수행하였다. V-그루브 맞대기 용접 배관이 그루브 각 $45^{\circ}$, $90^{\circ}$를 갖는 형상에 대한 한계하중 식을 제시하기 위해 용접 형상의 변화에 따른 용접부 너비를 정의하였고 강도불일치 비, 용접부 너비, 균열 길이 및 배관 반경 비에 대한 체계적인 변수 해석을 수행 하였다. 모재와 용접재는 탄성 완전소성재료로 가정하였으며 상불일치와 하불일치 조건에서의 인장 하중과 굽힘 하중에 대한 강도불일치 한계하중이 강도불일치 비($M_F$)와 형상변수(${\psi}$)를 통해 정량화 됨을 유한요소 해석을 통해 확인하였다.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

선회주행 시 차체의 비틀림 특성에 관한 연구 (A Study on Torsional Characteristics of the Car Body Types at Cornering Motion)

  • 이준성;조성규
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.739-744
    • /
    • 2017
  • 탄성변형과 피로손상은 카트의 주행성능에 영향을 미치는 것으로 카트 프레임에 영구변형을 유발할 수 있다. 카트프레임은 현가장치와 다른 장치를 포함하지 않으므로 두 가지 변형에 결정적인 영향을 미칠 수 있는 코너주행 시 동적 거동은 비틀림 변형이 원인이 된다. 선회주행 시 카트의 동적 거동을 분석하기 위해 카트의 GPS추적이 실시간으로 이루어지고 카트 프레임에 작용하는 비틀림 응력값을 측정하였다. 레저카트와 레이싱카트의 재료물성치들은 인장실험을 통해 얻었다. 비틀림 응력집중과 프레임 변형은 얻어진 결과 값을 토대로 프레임의 응력해석을 통하여 파악하였다. 개발된 주행분석장치를 이용하여 레저카트와 레이싱카트를 각 조건별로 실차실험을 수행하였고 이를 통한 코너에서 카트의 주행거동을 살펴보았다. 카트가 곡선주행 시 원심력으로 인해 하중이동이 발생하였으며 카트프레임에 비틀림 응력이 발생하였다. 예를 들어 레저카드의 경우, 40 km/h의 속도로 운전할 때 최대 비틀림 피로한도를 측정한 최대 비틀림응력은 230 MPa이며 비틀림 피로한도계수는 0.65를 나타내었다. 뿐만 아니라 카트의 선회 시 운전요소들을 운전측정시스템을 인스톨한 실측장비에서 측정하였으며 카트의 운전거동은 수직변위에 의해 측정하였다.

그라우트 주입율 변화에 따른 사질토의 동적계수 특성 (Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio)

  • 안광국;박준영;오종근;이준대;한기환
    • 한국지반환경공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.59-63
    • /
    • 2011
  • 전단탄성계수와 감쇠비와 같은 동적지반계수는 반복하중과 동적하중을 받는 지반구조물 설계에서 중요한 요소이다. 선형 한계변형률 내에서 미소변형률에 관한 전단탄성계수와 감쇠비는 변형률과 관계없이 일정하다. 전단탄성계수는 최대전단탄성계수로 감쇠비는 최소 감쇠비로 고려하였다. 동적변형특성 범주내의 최대선형탄성계수에 관련된 많은 시험들이 수행됨과 동시에 간극비, 과압밀비, 구속압, 지질이력, PI 그리고 하중주기수에 관련된 많은 인자들이 동적지반특성에 영향을 미친다. 그러나 그라우팅에 의해 향상된 지반동적특성에 관한 연구는 지하연속벽시공, 심층혼합처리공법, 강관다단그라우팅과 같이 미비한 실정이다. 본 논문에서는 그라우팅에 의해 향상된 동적지반특성을 연구하기 위하여 함수비(20%, 25%, 30%), 그라우트 주입율(5%, 10%, 15%),양생기간(7일, 28일)을 변화시키면서 공진주시험을 실시하였다. 그 결과, 밀크 그라우트의 주입율과 재령, 함수비에 따라 동적계수인 전단탄성계수와 감쇠비가 영향을 받는 것으로 나타났다.