• Title/Summary/Keyword: Elastic Deformation

Search Result 1,746, Processing Time 0.022 seconds

Non-linear Large Deformation Analysis of Elastic Rubber Mount (고무 재질 탄성 마운트의 비선형 대변형 거동 해석)

  • Nho, In-Sik;Kim, Jong-Man;Kwak, Jeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

Elastic-Plastic Fatigue Crack Growth and J Integral (彈塑性 疲勞균열進展과 J積分)

  • 송지호;김일현;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 1984
  • Constant-load-amplitude fatigue crack growth tests were carried out on 5083-0 aluminum alloy under elastic and elastic-plastic conditions. Crack length, crack closure and monotonic fatigue deformation were measured by Kikukawa's unloading elastic compliance monitoring technique and elastic-plastic fatigue crack growth rates were analysed in terms of J integral. Elastic-plastic fatigue crack growth rates can be well expressed by effective cyclic J integral until general yielding occurs. Beyond general yielding, monotonic fatigue deformation becomes significant and growth rates cannot be characterized by a single parameter of effective cyclic J integral alone. However, introducing one more parameter, maximum J integral J$_{max}$ to account for the effect of monotonic fatigue deformation, can explain fatigue crack growth behavior beyond general yielding.

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF

AN EFFECT OF LARGE DEFORMATIONS ON WAVES IN ELASTIC CYLINDRICAL LAYER

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.811-818
    • /
    • 1998
  • A cylindrical elastic layer in finite deformation s con-sidered. The characteristics of the linear longitudinal wave and the nonlinear shear wave are investigated; the dependence of the later on the parameter of large deformation is given.

The Effects of Centrifugal Stress on Seal Dynamics (시일 동특성에 미치는 원심응력의 영향에 관한 연구)

  • 양보석
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.64-68
    • /
    • 1989
  • The dynamic characteristics of the annular pressure seal employed in pump have been theoretically deduced with consideration of the effects of elastic deformation due to the centrifugal stress. The deformation of the shaft is governed by the linear theory of elasticity. The results derived herein considering the elastic deformation are compared with the previously published author's results in the stiffness and damping coefficients.

An Elastic Deformation Model of High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.39-46
    • /
    • 2006
  • This paper presents an elastic deformation model of a spindle unit (S/U), which takes into account the non-linear properties of high-speed ball bearings (particularly the effect of high rotational speed). For this, a software for the estimation of the S/U elastic deformation properties was developed and intended for use by S/U designers. A computer aided analysis of the model using the developed software was carried out and experiments showed the significant effect of rotational speed, cutting load and bearing axial preload, and showed some new phenomena, from which the criteria for the choice of bearing axial preload is given.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.