• Title/Summary/Keyword: Elastic Constants

Search Result 269, Processing Time 0.027 seconds

A New Method for Characterization of Composites by Ultrasonics (초음파를 이용한 복합재료 기계적 특성값의 새로운 특정 방법)

  • 장필성;전홍재
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • A new ultrasonic test method is proposed to obtain elastic constants of unidirectional composite materials nondestructively. In the proposed test method, only longitudinal transducers are used to measure wave velocities by through-transmission method. An aluminum wedge and a flat aluminum rectangular block are placed on each side of the test specimen. Oblique incident longitudinal wave is transmitted from a wedge to the specimen and the mode conversions are occurred sequentially at two interfaces between the specimen and aluminium. Measuring wave velocities converted to longitudinal waves in the rectangular block give all information to determine elastic constants of the composites. In order to determine shear stiffness coefficients, transverse wave velocity is measured indirectly from received longitudinal wave. Effects of anisotropy on waves are also considered in this study.

  • PDF

Structural analysis of liquid rocket thrust chamber regenerative cooling channel using visco-plastic model (점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu Chul-Sung;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.151-155
    • /
    • 2006
  • Elastic-viscoplastic structural analysis is performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was also conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plsstic model was incorporated into finite element program, Marc, by means of user subroutine. The structural analysis results indicate that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under operating condition.

  • PDF

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model (Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Aging Effect of Bio-inspired Artificial Basilar Membrane with Piezoelectric PVDF Thin Film

  • Kim, Wan Doo;Park, Su A;Kim, Sang Won;Kwak, Jun-Hyuk;Jung, Young Do;Hur, Shin
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.292-296
    • /
    • 2015
  • Biomimetic artificial basilar membrane being a core part of artificial cochlear requires performance evaluation through aging test. To evaluate the aging properties of PVDF piezoelectric membrane used for artificial basilar membrane, its mechanical properties such as tensile strength and elastic modulus and piezoelectric property such as piezoelectric constant were measured. The aging test conditions and acceleration constants were calculated based on Arrhenius model. The changes in tensile strengths and elastic moduli measured were less than 10~20% after aging test equivalent for 10 years. The piezoelectric constants were decreased drastically to 80% of its initial value in the early stage of the aging test and expected to decrease slowly down to 65% over 10 years. The experimental results show the reliability of totally implantable novel artificial cochlear and will contribute its commercialization.

Application of geophysical well logging to fracture identification and determination of in-situ dynamic elastic constants. (물리검층에 의한 파쇄대 인식과 동적 지반정수의 산출)

  • Hwang, Se-Ho;Lee, Sang-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.156-175
    • /
    • 1999
  • Recently the application of geophysical well logging to geotechnical site investigation is increasing, because the merit that geophysical logs provide the high resolution and in-situ physical properties in volumes of rock surrounding the borehole. Geophysical well logs are used to identify lithologic boundaries and fracture, to determine the physical properties of rock(i.e., density, velocity etc.), and to detect permeable fracture zones that could be conduits for ground water movement through the rocks. The principle of heat-pulse meter, the calibration of gamma-gamma logging, and principles and data processing of full waveform sonic logging are briefly reviewed, and the case studies of geophysical logs are discussed. Correlation between velocity by sonic logging and rock mass classification such as RMR(Rock Mass Rating) value is considered.

  • PDF

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

A Study on Interpretation of Seismic Reflection Traveltimes in Anisotropic Layers (이방성 지층에서의 탄성파 반사 주시자료의 해석에 관한 연구)

  • Hwang, Se Ho;Yang, Seung Jin;Jang, Seong Hyung;Kim, Jung Yul
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.201-207
    • /
    • 1994
  • This paper presents a technique to determine anisotropic elastic coefficients from traveltimes of seismic reflections or vertical seismic profiling (VSP) in tranversely isotropic layers whose thicknesses are known. The elastic coefficients are calculated from three different velocities (vertical, horizontal and skew velocities) which are determined from skew hyperbolic traveltimes by least-square fitting or semblance analysis. This interpretation technique is tested for synthetic traveltime data obtained for transversely isotropic models. The test shows that the anisotropic elastic constants of the models are determined accurately by this interpretation method.

  • PDF

An Evaluation of the Effect of Micro-cracks on Macro Elastic Moduli (매크로 탄성 계수에 미치는 마이크로 크랙의 영향 평가)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-103
    • /
    • 2006
  • A meso-scale analysis method using the natural element method, which is a kind of meshless method, is proposed for the analysis of material damage of brittle microcracking solids such as ceramic materials, concrete and rocks. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The macro elastic moduli of anisotropic as well as isotropic solids containing a number of randomly distributed microcracks are calculated in order to demonstrate the validity of the proposed method.

Natural Element Analysis on Macro Elastic Moduli for Materials with Micro-cracks (마이크로 크랙을 포함한 재료의 매크로 탄성 정수에 관한 자연요소해석)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.716-723
    • /
    • 2006
  • A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the micorcracks. The macro elastic moduli of isotropic solids containing a number of randomly distributed microcracks are calculated considering the effect of microcrack closure to demonstrate the validity of the proposed method.

The Determination of Elastic Constant for Ceramic Forming Material by Hybrid Method (하이브리드 방법에 의한 세라믹 성형재료의 탄성계수 결정)

  • Park Myong Kyun;Koo Bon Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.211-222
    • /
    • 2005
  • The ceramic forming materials are getting more important recently since they are used widely in repairing metal structures, welded metal structures and mechanical components etc. The determination of elastic constants for ceramic coating materials takes much time and efforts in experiment due to the brittleness of ceramic material itself. The aim of this research is to determine the Young's Modulus for ceramic metal coating material. In order to achieve the goal, the hybrid method which uses impulse hammer technique for experimental method and modal analysis of finite element method for computational method was used. The results show good agreement with existing experimental data on Young's Modulus.