• Title/Summary/Keyword: Elastic/plastic mismatch

Search Result 27, Processing Time 0.023 seconds

Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch (항복강도 불일치 반타원 계면균열 선단에서의 응력장)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

Limit load analyses of weld-center cracked plates under tension (용접부 중앙에 균열이 존재하는 인장 평판에 대한 한계하중 해석)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1830-1835
    • /
    • 2007
  • In the present work, the effect of strength mismatch on plastic limit loads is quantified for strength-mismatched plates with constant-depth surface cracks under tension, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate and crack geometries are systematically varied, in addition to the weld width. An important finding is that a parameter related to the weld width-to-ligament ratio is proposed, based on which limit loads can be uniquely quantified. The proposed limit load solutions is a valuable input to estimate nonlinear fracture mechanics parameters based on the reference stress approach.

  • PDF

Mis-Match Limit Load Analyses and Approximate J-Integral Estimates for Similar Metal Weld with Weld-Center Crack Under Tension Load (용접부 중앙에 표면균열이 존재하는 인장 평판에 대한 강도 불일치 한계하중 해석 및 간략 J-적분 예측)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.411-418
    • /
    • 2008
  • In this work, the effect of strength mismatch on plastic limit loads is quantified for similar metal weld plates with cracks under tension load, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate geometry and crack length are systematically varied, in addition to the weld width. An important finding is that mis-match limit loads can be uniquely quantified through strength mis-match ratio and one geometry-related parameter. Based on the proposed limit load solutions, reference stress based J-integral estimates is also investigated. When the reference stress is defined by the mis-match limit load, predicted J-integral values agree overall well with FE results.

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

Thermal Residual Stress Relaxation Behavior of Alumina/SiC Nanocomposites (Alumina/SiC 나노복합재료에서의 잔류 열응력 완화거동에 관한 연구)

  • Choa, Y.H.;Niihara, K.;Ohji, T.;Singh, J.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.11-11
    • /
    • 2002
  • Plastic deformation was observed by TEM around the intragranular SiC particles in the $Al_2O_3$ matrix for $Al_2O_3/SiC$ nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the $Al_2O_3$ matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between $Al_2O_3$ matrix and SiC particle was observed. In monolithic $Al_2O_3$ and $Al_2O_3/SiC$ microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.

  • PDF

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

Characteristics of Strength and Fracture in Strength Mismatched Joint by Dynamic Loading (동적하중 하에서의 강도적 불균질부를 갖는 용접이음재의 강도 및 파괴 특성)

  • ;望月正人;大細充;;豊田政男
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.55-63
    • /
    • 2003
  • Welded joint generally has heterogeneity of strength, material, and fracture toughness and it is important to understand the characteristics of material strength and fracture of welded joint considering heterogeneous effect. Characteristics of strength and fracture of an undermatched joint under dynamic loading was studied by round-bar tension tests and thermal elastic-plastic analyses in this paper. The strength and fracture of the undermatched joints should be evaluated based on the effects of the strain rate and the temperature including temperature rise during the dynamic loading. The differences of fracture characteristics like such as ductile-to-brittle transition behavior are well precisely explained from the stress-strain distribution obtained by numerical analysis.

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Influences of Core Materials during Impact The Bulging Behavior of Sleeved Polymer Projectiles (슬리브드 폴리머 발사체의 충격시 벌징 거동 패턴에 미치는 코어 재료의 영향)

  • Shin, Hyung-Seop;Park, Sung-Taek;Jung, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.198-203
    • /
    • 2008
  • In the present study, the deformation behavior of both of metal and polymer combination on impact was investigated. They have showed a different deformation behavior when the co-axially combined projectile was impacted on rigid target. The theory according to Taylor's simplified approach assumes an ideally rigid-plastic material model exhibiting rate-independent behavior and simple one-dimensional wave propagation concepts that neglect radial inertia. In the case of impact with polymeric materials, elastic strain in general are not negligible compared with plastic strain; and the rigid-plastic material behavior assumed by Taylor for metallic materials cannot be applied any more. Since, the sleeve and the core materials have widely different mechanical properties, they will produce a significant difference of mechanical impedance with each other. Therefore these impedance mismatch influences on the deformation behavior sleeved polymer projectile on impact. As a result, sleeved projectiles will generate a very interesting impact behavior. Therefore, the according to sleeved metal material and core polymer material can see expected. The objective of this study was to investigate the factors which influences on deformation behavior pattern of sleeve materials surface.

  • PDF

Effects of Lattice Mismatch on Photoluminescence Efficiency of InGaAsP/InP Heterostructures (InGaAsP/InP이종접합구조의 격자부정합이 Photoluinescence효율에 미치는 영향)

  • Lee, Jong-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.516-523
    • /
    • 1994
  • The interfacial coherency of metal organic chemical vapor deposition grown InGaAsP/InP heterostructure wafers was examined and their influences on the optoelectronic properties were investigated in this study. (400) symmetric and (511) asymmetric reflections were employed to measure the lattice coherency. Existence of misfit dislocations was examined by x-ray topography and reverified by photoluminescence (PL) imaging. PI, measurements were performed, and higher PL intensity was obtained for elastically strained samples and lower intensity for plastically deformed samples. The highest PL intensity was obtained for the sample lattice matched at the growth temperature. PL full-width at half maximum (FWHM) was found to depend on the degree of lattice mismatch. A correlatior between x-ray FWHM and PL intensity was empirically established. The results presented demonstrate that the interfacial coherency is of primary significance in affecting the optoelectronic properties through elastic strain and plastic deformation.

  • PDF