• Title/Summary/Keyword: Eigenvalue Design Sensitivity

Search Result 49, Processing Time 0.025 seconds

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

Natural Frequency and Mode Shape Sensitivities of Non-Proportionally Damped Systems : Part 1, Distinct Natural Frequencies (비중복 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도 해석법)

  • 김동옥;김주태;오주원;이인원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 1999
  • 본 연구에서는 중복되지 않는 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법에서는 (n+1)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계의 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법의 검증을 위해 7자유도를 갖는 차량모델의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 콘테이너의 질량으로 하였다.

  • PDF

Natural Frequency and Mode Shape Sensitivities of Non-Proportionally Damped Systems : Part II, Multiple Natural Frequencies (중복 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도 해석법)

  • 김동옥;김주태;박선규;이인원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.103-109
    • /
    • 1999
  • 본 연구에서는 중복 고유치를 갖는 비비례 감쇠 진동계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법에서는 (n+m)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계에 있어서 m차의 중복도를 갖는 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법의 검증을 위해 5자유도를 갖는 단순구조물의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 모델의 부분강성으로 하였다.

  • PDF

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System (초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제)

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

A novel method for the vibration optimisation of structures subjected to dynamic loading

  • Munk, David J.;Vio, Gareth A.;Steven, Grant P.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • The optimum design of structures with frequency constraints is of great importance in the aeronautical industry. In order to avoid severe vibration, it is necessary to shift the fundamental frequency of the structure away from the frequency range of the dynamic loading. This paper develops a novel topology optimisation method for optimising the fundamental frequencies of structures. The finite element dynamic eigenvalue problem is solved to derive the sensitivity function used for the optimisation criteria. An alternative material interpolation scheme is developed and applied to the optimisation problem. A novel level-set criteria and updating routine for the weighting factors is presented to determine the optimal topology. The optimisation algorithm is applied to a simple two-dimensional plane stress plate to verify the method. Optimisation for maximising a chosen frequency and maximising the gap between two frequencies are presented. This has the application of stiffness maximisation and flutter suppression. The results of the optimisation algorithm are compared with the state of the art in frequency topology optimisation. Test cases have shown that the algorithm produces similar topologies to the state of the art, verifying that the novel technique is suitable for frequency optimisation.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies (중복 고유 진동수를 갖는 진동하는 강체-유연체 계의 위상최적설계)

  • Ahn, Byungseong;Kim, Suh In;Kim, Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.363-372
    • /
    • 2016
  • When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation.