• Title/Summary/Keyword: Eigen-Beamforming

Search Result 14, Processing Time 0.02 seconds

Subspace-Based Adaptive Beamforming with Off-Diagonal Elements (비 대각요소를 이용한 부공간에서의 적응 빔 형성 기법)

  • Choi Yang-Ho;Eom Jae-Hyuck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.84-92
    • /
    • 2004
  • Eigenstructure-based adaptive beamfoming has advantages of fast convergence and the insentivity to errors in the arrival angle of the desired signal. Eigen-decomposing the sample matrix to extract a basis for the Sl (signal plus interference) subspace, however, is very computationally expensive. In this paper, we present a simple subspace based beamforming which utilizes off-diagonal elements of the sample matrix to estimate the Sl subspace. The outputs of overlapped subarrays are combined to produce the final adaptive output, which improves SINR (signal-to-interference-plus-noise ratio) comapred to exploiting a single subarray. The proposed adaptive beamformer, which employs an efficient angle estimation is very roubust to errors in both the arrival angles and the number of the incident signals, while the eigenstructure-based beamforer suffers from severe performance degradation.

Beamforming Algorithm for Smart Antenna System in Multi-mode Environment (다중 모드 지원이 가능한 스마트 안테나 시스템의 빔형성 알고리즘)

  • Ahn, Sung-Soo;Kim, Min-Soo
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.42-49
    • /
    • 2008
  • This paper proposes a new beamforming algorithm to select beamforming gain or/and diversity gain in CDMA2000, W-CDMA, W-LAN channel according to signal environment on the multipath. In this paper, we present the criteria to obtain deversity gain at any point that based on quantized experimental value. Proposed method proposes represents a performance better than conventional algorithm adopting the largest two eigenvector when angle spread is exit. From the results of performance analysis through various simulation, it is confirmed that proposed method is far superior about $3{\sim}4$ times compare to conventional method in signal environment.

Gradient On-Off Beamforming Algorithm Based On Eigen-Space Method For a Smart Antenna In IS-2000 1X Signal Environment (IS-2000 1X 신호 환경하에서의 고유공간 방법에 근간한 그래디언트 온-오프 빔평성 알고리즘)

  • 이정자;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.949-957
    • /
    • 2003
  • This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.

Adaptive Beamforming Technique of Eigen-space Smart Antenna System (고유공간 스마트 안테나 시스템의 적응 빔형성 기술)

  • 김민수;이원철;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.989-997
    • /
    • 2002
  • This paper presents a new technique that enhances the performance of the smart antenna system especially in signal environments of wide angular spread by adopting a weight vector obtained from two eigenvectors of theautocovariance matrix of the received data. While the conventional beamformingtechnique employs only one eigenvector corresponding to the largest eigenvalue, the proposed algorithm uses two eigenvectors corresponding to the largest and second largest eigenvalue in such a way that it can be robust enough to the signal environments of wide angular spread. An efficient adaptive procedure is shown to verify that the optimal weight vector consisting of the two eigenvectors is obtained with a reasonable complexity(3.5$N_2$+ 12N) and accuracy. it is also shown in this paper that the numerical results obtained from the proposed adaptive procedure well agree with those obtained from a commercial tool computing the eigen-function of MATLABTM.