Generally to estimate the priority vector in AHP, an eigen-vector method or a log-arithmic least square method is applied to pairwise comparison matrix itself. In this paper an estimating method is suggested, which is applied to pairwise comparison matrix adjusted by using the eigen-decomposition of skew-symmetric matrix. We also show theoretical background, meanings, and several advantages of this method by example. This method may be useful in case that pairwise comparison matrix is quite inconsistent.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.176-177
/
2012
사람의 음성을 압축하는 방법으로 Code Excited Linear Prediction (CELP) 코더가 주로 사용되어 왔다. CELP 코더의 수신단에서는 양자화 된 여기신호를 LPC 필터로 합성하여 신호를 복원한다. LPC 합성필터의 영향으로 양자화 된 여기신호의 보로노이 셀 모양이 변형되는 문제점이 있기 때문에 이런 문제점을 해결하기 위해서 Karhunen-Loeve-Transform based Classify vector Quantization (KLT-CVQ) 코더가 제안되었다. 기존 KLT-CVQ 코더는 KLT 변환과 class 선택을 위해서 Eigen Value Decomposition (EVD)을 이용해서 eigen vector와 eigen value를 계산한다. 본 논문에서는 EVD 대신에 UTV Decomposition (UTVD)을 이용하여 KLT-CVQ의 계산량 문제점을 개선하는 방법을 제안한다.
The guideline of selecting the number of snapshot dataset, $N_s$ in proper orthogonal decomposition(POD) was presented via the analysis of Eigen values based on the singular value decomposition(SVD). In POD, snapshot datasets from the solutions of Euler or Navier-Stokes equations are utilized to SVD and a reduced order model(ROM) is constructed as the combination of Eigen vectors. The ROM is subsequently applied to reconstruct the flowfield data with new set of flow conditions, thereby enhancing the computational efficiency. The overall computational efficiency and accuracy of POD is dependent on the number of snapshot dataset; however, there is no reliable guideline of determining $N_s$. In order to resolve this problem, the order of maximum to minimum Eigen value ratio, O(R) from SVD was analyzed and presented for the decision of $N_s$; in case of steady flow, $N_s$ should be determined to make O(R) be $10^9$. For unsteady flow, $N_s$ should be increased to make O(R) be $10^{11\sim12}$. This strategy of selecting the snapshot dataset was applied to two dimensional NACA0012 airfoil and vortex flow problems including steady and unsteady cases and the numerical accuracies according to $N_s$ and O(R) were discussed.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.11
/
pp.28-35
/
2013
The Krylov-Schur algorithm has been applied to reveal the eigen-properties of the wave guide having the square cross section. The eigen-matrix equation has been constructed from FEM with the basis function of the tangential edge-vectors of the triangular element. This equation has been treated firstly with Arnoldi decomposition to obtain a upper Hessenberg matrix. The QR algorithm has been carried out to transform it into Schur form. The several eigen values satisfying the convergent condition have appeared in the diagonal components. The eigen-modes for them have been calculated from the inverse iteration method. The wanted eigen-pairs have been reordered in the leading principle sub-matrix of the Schur matrix. This sub-matrix has been deflated from the eigen-matrix equation for the subsequent search of other eigen-pairs. These processes have been conducted several times repeatedly. As a result, a few primary eigen-pairs of TE and TM modes have been obtained with sufficient reliability.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.2
/
pp.10-14
/
2014
Krylov-Schur iteration method has been applied to the 2-Dim. waveguides of the varied geometrical structure. The eigen-equations for them have been constructed from FEM based on the tangential edge vectors of triangular elements. The eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. The eigen-pairs as the results have been revealed visually in the schematic representations.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.4C
/
pp.336-341
/
2008
In this paper, beamforming algorithm is proposed which can obtain diversity gain in beamforming system that deploy antenna elements with half-wavelength. The proposed algorithm provides beam-pattern using eigen-vectors that span received signal subspace. The criterion to decide optimal rank of eigen-space used for beamforming is also proposed. A beamforming system applied the proposed algorithm shows better performance with diversity gain as getting larger angle spread. This paper provides a description of proposed algorithm with analysis of the performance using various computer simulations.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.5
/
pp.39-49
/
2015
Some characters and construction theorems of Pseudo Jacket Matrix which is generalized from Jacket Matrix introduced by Jacket Matrices: Construction and Its Application for Fast Cooperative Wireless signal Processing[27] was announced. In this paper, we proposed some examples of Pseudo inverse Jacket matrix, such as $2{\times}4$, $3{\times}6$ non-square matrix for the MIMO channel. Furthermore we derived MIMO singular value decomposition (SVD) pseudo inverse channel and developed application to utilize SVD based on channel estimation of partitioned antenna arrays. This can be also used in MIMO channel and eigen value decomposition (EVD).
Park Keun-Man;Cho Jin-Rae;Jung Weui-Bong;Bai Soo-Ryong
Proceedings of the Computational Structural Engineering Institute Conference
/
2006.04a
/
pp.764-771
/
2006
The use of 3-D finite elements for the eigen analysis of beam-like structures with arbitrary section shape may not be practical in certain cases, from the aspect of CPU time. In this connection, this paper presents a systematic algorithm for decomposing an arbitrary section into finite number of basic ones and computing essential sectional quantities required for the eigen analysis using the beam theory. The numerical accuracy of the proposed method is assesed from the comparison with the 3-D finite . element method.
Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.892-894
/
2005
Graph partitioning provides an important tool for data clustering, but is an NP-hard combinatorial optimization problem. Spectral clustering where the clustering is performed by the eigen-decomposition of an affinity matrix [1,2]. This is a popular way of solving the graph partitioning problem. On the other hand, semidefinite relaxation, is an alternative way of relaxing combinatorial optimization. issuing to a convex optimization[4]. In this paper we present a semidefinite programming (SDP) approach to graph equi-partitioning for clustering and then we use eigen-decomposition to obtain an optimal partition set. Therefore, the method is referred to as semidefinite spectral clustering (SSC). Numerical experiments with several artificial and real data sets, demonstrate the useful behavior of our SSC. compared to existing spectral clustering methods.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.7
/
pp.142-148
/
2014
Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The spectra have been compared with each other to identify the effect of boundary conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.