• Title/Summary/Keyword: Egress Time

Search Result 84, Processing Time 0.025 seconds

Safety Assessment of the Evacuation at School Building by Escape Training and Simulation (학교건물에서 피난훈련과 시뮬레이션을 통한 피난안전성 평가)

  • Jeong, Mu-Heon;Lee, Beong-Gon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, the evacuation training were performed in a high school building in Cheong-Ju and compared with the simulation program (Simulex). Also numerical analysis of room fire in school building was conducted by fire model (FDS, CFAST) and evaluated the available safe egress time for the safety assessment. As a result, the 8% of total egress persons were failed to escape at evacuation training and 40% of total egress persons were failed to escape at Simutex simulation. Simutex program was not reflected the real escape conditions, such as evacuation route, refuge place, etc.

Vertical Evacuation Speed in Stairwell of a High-rise Office Building (업무용 고층건물 계단실의 보행속도에 관한 연구)

  • Joung, Suck-Hwan;Yoon, Myong-Oh
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • As building height is increased, more careful decisions about the required safe egress time is needed for evacuation. This study analyzed the influence of three training sessions on the vertical speed of evacuation in the high rise building. Evacuation experiments were done in a high-rise office building in Seoul, and we analyzed the vertical evacuation speed as a function of density using a camera. Controlled and uncontrolled total evacuation were compared using the Pathfinder simulation. The process of repeated training, changed the specific stair utilization rate from 6.3% to 39.5%. The vertical evacuation speed as a function of density was analyzed using the equation s = 1.004 ? 0.288D, which is very similar to the equation used in a different study. The total evacuation time of the special controlled total evacuation was reduced by about 25% compared to the simultaneous evacuation.

The Floor Layout Plan of Classrooms for Securing Evacuation Stability in School (학교의 피난 안전성 확보를 위한 층별 학급 배치방안)

  • Lee, Soon Beom;Lee, Jai Young;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.509-515
    • /
    • 2021
  • This study analyzes the efficient floor layout plan of classrooms for securing evacuation stability in school in case of fire by using the Pathfinder simulation program. Efficient evacuation methods and safety were evaluated by analyzing REST (Required Safe Egress Time) according to the allocation of personnel by floor targeting a high school 5-story building equipped with a ramp and stairs. The current status of personnel assignments exceeded the Required Safe Egress Time(RSET), resulting in a problem with evacuation safety. When students were placed on the 3rd, 4th, and 5th floors, the result was that the time exceeded RSET the most. When students were placed on the 1st, 2nd, and 3rd floors, the result was that they completed evacuation in the shortest time, less than RSET. In the current state, when evacuation was guided by designating an evacuation exit depending on the location, the result of shortening RSET was obtained. As a result, it is effective to put the students on the lower floors when placing students in high-rise school buildings in terms of evacuation safety, and in the preliminary training, it is required to designate evacuation exits so that they can use the nearest exit for each location in case of a fire. As a future research project, additional research is needed on the RSET when a fire occurs in a specific location according to whether the automatic fire door at that location is opened or closed.

A Study on ASET(available safe egress time) for Subway Station of Light Weight Railcar Using FDS (FDS를 이용한 경량철도 지하역사의 피난허용시간 연구)

  • Kim, Chi-Hun;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-366
    • /
    • 2011
  • 본 연구에서는 무인운영이 예정되어 있는 경량철도 지하역사 화재 시 안전대책을 강구하기 위하여 다양한 시나리오의 화재상황을 모사하여 FDS 사용코드를 이용해 화재유동현상을 분석하였다. 해석경계조건은 전동차 내부공간을 포함한 지하 3개 층과 설계에 반영된 환기설비를 적용하였으며, 약 500만 개의 격자를 34개 블록으로 나누어 계산하였다. 비상탈출 동선을 파악하여 주요 위치에서 피난경로상의 각 층 바닥으로 부터 1 m 높이의 한계온도와 연기층의 도달시간을 시나리오 별로 분석하여 보았다.

  • PDF

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Analyzing the Difference between the Stated Preference and the Revealed Preference before/after the High-speed Rail Service in Korea

  • Lee, Jang-Ho
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2014
  • The Korean high-speed rail (HSR) began its commercial service in 2004. This service has been created significant changes in the system of intercity passenger travels of Korea. However, the actual ridership was approximately half of the estimated one in the planning stage. In this background, this paper presents the difference between the stated preference (SP) before the HSR service and the revealed preference (RP) after it using the intercity travel mode choice models. Several meaningful differences are found in terms of the factors affecting the travel mode choice, the estimation results of model, the monetary values of time, and elasticities. While the access/egress travel time of high-speed rail is less important than in-vehicle travel time in the SP sample, they have same weight in the RP sample. Also the RP models show that the probability of choosing HSR can be decreased by the increase of the number of vehicles in household contrary to the results from the SP models. The monetary values of travel time are relatively high and the direct and cross elasticities in response to changes in level-of-service of HSR are relatively low in the RP sample. This Korean case is expected to offer referable material for preparing high-speed rail services in other countries by showing the difference between the SP and RP before/after the actual service, identifying the importance of access/egress travel time and lower direct elasticities of HSR demand.

A Study on the Possibility of using BIM in Automated Building Code Checking for Egress and Anti-disaster Regulations for Large-scale Buildings (BIM을 이용한 초대형 건축물 방재 및 피난 관련 법규 자동검토 가능성 연구)

  • Jeong, Ji-Yong;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.690-693
    • /
    • 2008
  • Recently, the trend has been for buildings to become larger and more sophisticated, and this has created safety issues. Because the buildings are big it takes lots of time to check building codes related to anti-disaster and safety manually, and there is the high possibility of making mistakes. Due to these problems, according to a study, 83% of architecture and construction workers believe that an automated code-checking system is needed. This study researches past automated code checking systems and research activity, and using Building Information Model (BIM) technology, determines the feasibility of developing a system to automatically check domestic codes related to egress and anti-disaster. This paper describes the necessity of an automated building code checking system and expected effects. It then reports whether the methods used in previous studies can be deployed in domestic building code checking and discusses problems and limitations. It also suggests an alternative approach. Although this study covers limited codes related to egress, we need to find out what is needed for automatic general code checking system and do further studies for that.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

Effects of High School Corridor Walking Obstacles on Evacuation Safety (고등학교 복도 보행 장애물이 피난 안전성에 미치는 영향)

  • Lee Soon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • This study analyzes the effects of personal lockers, drinking fountains, and all-in-one shutters (hereinafter referred to as "corridor walking obstacles") on evacuation safety to suggest the necessity of operating a more effective educational facility safety certification system. To achieve this purpose, the five-story high school building with the obstacles installed in the corridor has been chosen, and evacuation tests through the Pathfinder Simulation Program have been carried out. When the evacuation exit is designated in the current state, where the students are placed on the 2nd, 3rd, and 4th floors and the corridor walking obstacles are applied as a variable, the required safe egress time (RSET) is 322 seconds. This can lead to dangerous results in the event of a disaster by exceeding the available safe egress time (ASET) standard of 240 seconds by 82 seconds. When students are placed on the 1st, 2nd, and 3rd floors under the same conditions, the RSET is 214.5 seconds, 25.5 seconds lower than the ASET standard, indicating that it is effective in reducing the impact of walking obstacles on evacuation time. The safety management plan for walking obstacles in the corridors is discussed, considering the special characteristics of the school corridors. The results of this study can be used as the necessary data for optimizing evacuation routes in corridors and creating a safe, educational environment.