• 제목/요약/키워드: Egr3

검색결과 137건 처리시간 0.024초

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

국내 EGR과 SCR 장착 중형트럭 대기오염물질 배출 특성 (Characteristics of Air Pollutants Emission from Medium-duty Trucks Equipped EGR and SCR in Korea)

  • 손지환;김정화;정성운;유흥민;홍희경;문선희;최광호;이종태;김정수
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.130-136
    • /
    • 2016
  • NOx and PM are important air pollutants as vehicle management policy aspect. Medium-duty truck is the main source of the pollutants although the vehicle market share is only 3.5%. National emission portion of NOx and PM form the mobile sourece are 14% and 16% respectively. In this study it was investigated that characteristics of air pollutants emission on medium duty truck equipped with EGR and SCR system. Vehicle's test reflected driving cycle on the chassis dynamometer, and applied test cycle was WHVC(World Harmonized Vehicle Cycle) mode. The test cycle include three segments, represent urban, rural and motorway driving. Based on the test results NOx, PM, HC were less emitted form SCR vehicle than EGR vehicle. And CO was less emitted form EGR vehicle than SCR vehicle due to CO oxidation reaction on DPF surface. And most air pollutants reduced as average vehicle speed increased. Pollutants were less emitted on motorway section than urban and rural sections. But highly NOx emission on motorway section was verified according to increased EGR ratio on fast vehicle speed. HC and CO additional emission was identified as 68%, 58% respectively during SCR vehicle's cold engine start emission test. NOx additional emission was detected by 24% on SCR vehicle's condition of engine cold start while not detected on vehicle equipped with EGR. SCR vehicle's additional NOx emission was derived from low reaction temperature during engine cold start condition. medium-duty truck emission characteristics were investigated in this study and expected to used to improve air pollutants management policy of medium-duty truck equipped with SCR & EGR.

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구 (A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF

딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구 (A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube)

  • 서영호;허성찬;권영석;구태완;김정;강범수
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구 (A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation)

  • 이준;한창석
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구 (A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향 (Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine)

  • 유동훈;서전수신;임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.

EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

연료소비율 개선을 위한 고압/저압 배기재순환 시스템 구축 및 저온연소 엔진의 운전전략 수립 (Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Improve Fuel Consumption)

  • 신승협;한영덕;심의준;김득상
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.81-89
    • /
    • 2014
  • This study researched on the effect of HP/LP-EGR system to improve fuel consumption of Low Temperature Combustion Engine. Firstly, low temperature combustion engine with HP/LP-EGR system was established using 6.0L wastegate turbocharger HDDI engine. And suppliable EGR rate of the engine was proven to be enough to realize stable low temperature combustion. Then, optimum operating strategy was founded to develop fuel consumption of the engine. Control parameters were HP/LP-EGR valve and IPCV(Intake Pressure Control Valve) duty. Experiments method was that characteristics of the engine were measured and analyzed according to HP/LP-EGR strategies while EGR rate was fixed. Operating range for the strategy were divided into three parts, low load for low temperature combustion, high load for conventional diesel combustion, and transient condition. Finally, with the above strategy of this study, BSFC of the engine was improved about 2% compared to the base engine, and emission level, NOx and PM, met Tier4Final emission regulation.