• Title/Summary/Keyword: Egg white phantom

Search Result 3, Processing Time 0.019 seconds

Evaluation of Acoustic, Thermal, and Morphological Properties in the Egg White Phantom

  • Kim, Mi-Seon;Kim, Ju-Young;Moon, Dong-Jun;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • The egg white phantom is a thermal lesion visualization phantom able to illustrate a thermal lesion. It is often used to evaluate the performance of HIFU and is less expensive than the BSA phantom. This study determined the optimal phantom composition for evaluated therapeutic ultrasound machines by varying the egg white concentration in the egg white phantom and demonstrated its utility as a therapeutic ultrasound phantom. The egg white phantom at varying egg white concentrations (10-40% in 10% intervals) was fabricated, and its thermal properties and acoustic properties were assessed. In addition, the size and shape of the formed lesion were compared between the egg white phantom and bovine liver tissue according to the electrical power. The results showed that 30% egg white phantom was optimal for the performance evaluation due to its thermal and acoustic properties. The generated thermal lesions formed sequentially as a cigar, ellipse, tadpole, and cone shapes according to the electrical power; a similar tendency was observed in the liver tissue. Hence, we conclude that the egg white phantom will prove useful in quantitatively evaluating the thermal effects of therapeutic ultrasound.

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

Study on Changes in Shape of Denatured Area in Skull-mimicking Materials Using Focused Ultrasound Sonication

  • Min, JeongHwa;Kim, JuYoung;Jung, HyunDu;Kim, JaeYoung;Noh, SiCheol;Choi, HeungHo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • Recently, ultrasound therapy has become a new and effective treatment for many brain diseases. Therefore, skull-mimicking phantoms have been developed to simulate the skull and brain tissue of a human and allow further research into ultrasound therapy. In this study, the suitability of various skull-mimicking materials(HDPE, POM C, Acrylic) for studies of brain-tumor treatments was evaluated using focused ultrasound. The acoustic properties of three synthetic resins were measured. The skull-mimicking materials were then combined with an egg white phantom to observe the differences in the ultrasound beam distortion according to the type of material. High-intensity polyethylene was found to be suitable as a skull-mimicking phantom because it had acoustic properties and a denatured-area shape that was close to those of the skull,. In this study, a skull-mimicking phantom with a multi-layer structure was produced after evaluating several skull-mimicking materials. This made it possible to predict the denaturation in a skull in relation to focused ultrasound. The development of a therapeutic protocol for a range of brain diseases will be useful in the future.