Mohammad Ayub Latif;Muhammad Khalid Khan;Umema Hani
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권5호
/
pp.1356-1376
/
2023
Software effort estimation is one of the most difficult tasks in software development whereas predictability is also of equal importance for strategic management. Accurate prediction of the actual cost that will be incurred in software development can be very beneficial for the strategic management. This study discusses the latest trends in software estimation focusing on analogy-based techniques to show how they have improved the accuracy for software effort estimation. It applies the standard deviation technique to the expected value of analogy-based estimates to improve accuracy. In more than 60 percent cases the applied technique of this study helped in improving the accuracy of software estimation by reducing the Magnitude of Relative Error (MRE). The technique is simple and it calculates the expected value of cost or time and then uses different confidence levels which help in making more accurate commitments to the customers.
Estimating software development effort remains a complex problem attracting considerable research attention. Improving the estimation techniques available to project managers would facilitate more effective control of time and budgets in software development as well as market. However, estimation is difficult because of its similarity to export judgment approaches and fur its potential as an expert assistant in support of human judgment. Especially, in software development for DCS (Distributed Control System), because of infrastructure software related to target-machines hardware and process characteristics should be considered, estimating software development effort is more complex. This paper suggests software development effort estimation technique using neural network. The methods considered are based on COCOMO and case-based projects. Estimation results applied to case-based project appeared to have value fur software development effort estimation models.
정확한 소프트웨어 공수 예측은 소프트웨어 관련 여러 커뮤니티들에서 예전부터 항상 이슈가 되어 왔다. 소프트웨어 공수 예측의 정확도를 향상시키기 위해 지금까지 많은 연구들에서는 데이타 품질이 공수 예측에 중요한 요소들 중 하나임에도 불구하고 이것에 대한 고려 없이 공수 예측 기법들에만 초점을 맞추어 왔다. 본 연구에서는 소프웨어어 공수 예측 기법과 이상치 제거 기법들 사이의 영향 관계를 공수 예측 정확도의 관점에서 실험적으로 살펴본다. 두 개의 프로젝트 데이타들(ISBSG와 국내의 한 금융 조직으로부터 수집된 데이타)에 대해 일반적으로 많이 사용되는 세 가지 공수 예측 기법(최소제곱법, 신경망 네트워크, 그리고 베이지안 네트워크)과 두 가지 이상치 제거 기법(최소절사제곱법과 K-means 클러스터링)을 적용시켜 결과들을 서로 비교해 보고 이상치 제거 기법을 적용하지 않은 결과와도 비교해 본다.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.133-141
/
2001
Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However is we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set. eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case, set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.
지금까지는 FP, UCP, COCOMO 모델에 의하여 시험노력을 추정하거나, 또는 개발한 수많은 프로젝트 데이터 측정을 통하여 각 단계별 노력 투입 비율에 의거 시험단계에 투입된 시험노력을 추정하였다. 본 연구에서는 소프트웨어 시험노력 추정을 소프트웨어 개발노력 추정과 독립적으로 이루어질 수 있도록 시험노력 추정 모델을 만들고 또 시험노력 추정절차를 제시한다. 모델은 시험노력이 테스트 케이스의 수와 복잡도에 비례하는 특성을 반영하고, 통합시험, 시스템시험, 인수시험 등 시험 태스크를 수행하는 시험 조직의 역량에 영향을 받는 점을 고려하였다. 제시한 시험노력 추정 모델과 절차에 의해 기존의 프로젝트 데이터에 시험에 관련된 추정 데이터를 이용하여 시험노력을 추정한 결과와, 개발계획 수립을 위하여 추정한 개발노력 상에서 배분된 시험노력과 비교하였을 때 4.7% 정도의 오차를 보였다. 시험 조직이 갖는 기술적인 경험, 구축된 시험환경의 정도, 프로젝트의 복잡성과 개발조직의 환경 등을 측정하여 주어진 모델의 조정 계수 값에 반영한다면, 보다 정교한 독자적인 시험노력 추정이 가능하다.
In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.
성공적인 프로젝트 계획은 활용 가능한 일정과 더불어 프로젝트를 완수하는데 요구되는 노력을 얼마나 정확히 추정하느냐에 달려있다. 새로운 또는 보다 나은 모델 개발에 많은 연구가 이루어졌지만 현존하는 소프트웨어 노력 추정 모델들은 개발 전순기에 대해 투입되는 총 개발노력과 단위시간당 소요되는 인력인 노력 함수만을 제공한다. 또한, Putnam은 세부단계별로 일정한 개발노력 투입 비율을 제시하였다. 그러나 소프트웨어의 규모, 복잡도와 운영환경의 영향으로 인해 프로젝트 별로 투입되는 총 개발노력의 규모에 차이가 발생하며, 그 결과, 개발 세부단계별로 투입되는 노력의 규모도 프로젝트마다 차이가 발생한다. 본 논문은 총 개발노력 변동에 따른 소프트웨어의 명세화, 구축과 시험단계에 투입될 개발노력을 추정하는 선형과 다항식 모델을 제시하였다. 이 모델들은 128개의 다른 소프트웨어 프로젝트들로부터 유도되었다. 제안된 모델은 프로젝트의 일정과 노력 할당 관리에 실질적인 지침을 제공할 것이다.
In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.
As software becomes more complex and its scope dramatically increases, the importance of research on developing methods for estimating software development efforts has been increased. Such accurate estimation has a prominent impact on the development projects. To develop accurate effort estimation models, many studies have been conducted among the academia and the practitioners. Out of the numerous methods, Constructive Cost Model (COCOMO) based on Line of Code (LOC), Regression Model based on Function Point (FP) were the most popular models in the past. As today's development environments are dynamically changing, these traditional methods do not work anymore. There is an impending need to develop an accurate estimation model which accommodates itself to the new environments. As a possible solution, this research proposes and evaluates an software development estimation model based on function points and neural networks.
In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.