• Title/Summary/Keyword: Effluent standard

Search Result 187, Processing Time 0.026 seconds

Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent (산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교)

  • Lee, Sun Hee;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

A Study on Strengthening Option of T-N Effluent Water Quality Standards of Sewage Treatment Plants (하수처리시설의 T-N 방류수 수질기준 강화방안에 관한 연구)

  • Kim, Ji Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.216-225
    • /
    • 2018
  • Over the past 40 years, the public sector has continued to invest in the sewage treatment plants (STPs) in Korea. Currently, the domestic sewage treatment rate is over 90% with the enhancement of operating efficiency of the STPs, and water quality of major rivers has been continuously improved. However, COD and T-N indicators are stagnating or slightly worsening, and though advanced treatment facilities are installed in most of the STPs, there is a limit to the removal of nutrients. Since there are a lot of water pollution sources in the vicinity of the watershed because of high population density in Korea, it is essential to reduce the inflow of the nutrients in order to prevent the eutrophication of the rivers and lakes. While the effluent T-P standard in STPs has greatly strengthened since 2012, which results in the considerable investment for the improvement of treatment process in STPs for the last few years, it is necessary to strengthen the T-N standards, as the effluent standard of T-N has been maintained at 20 mg/L since 2002. In this study, based on the analysis of the effluent T-N standard status of major industrialized countries, and the domestic nitrogen load in public waters, the option of appropriate T-N standard level is reviewed, and the required investment costs and the effect of strengthening the standard are estimated.

Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area (인공습지의 농촌지역 오수정화시설에 적용가능성 연구)

  • 윤춘경;권순국;권태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

Improvement on Sewerage Effluent Standard of Public Sewerage Treatment Plants (공공하수처리시설 수질기준 선진화 방안)

  • Yu, Soon-Ju;Park, Sang-Min;Kwon, Oh-Sang;Park, Su-Jeong;Yeom, Ick-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.276-287
    • /
    • 2013
  • Domestic sewage contains increasingly more pharmaceuticals and personal care products (PPCPs), due to rising use of medicines, health supplement food and daily necessities. And various types of industrial wastewater from pollution sources in treatment areas could flow into the public sewerage treatment plants (PSTPs) in metropolitan areas. The conventional PSTPs are designed to treat suspended solids, biodegradable organics, nitrogen and phosphorous from residential and industrial areas and public facilities. However, toxic, conventional, and non-coventional pollutants from non-domestic sources that discharge into sewer system as well as domestic source with various chemicals could not be treated in the conventional PSTPs and discharged untreated to public basin. In this paper we aim to consider the establishment system of effluent standard of PSTPs in comparison with water quality standard of water environment and wastewater discharge regulation. And also we suggest the necessity of regulations on the pretreatment of industrial wastewater as part of efforts to improve water quality in sewerage systems and to protect public basin.

The Limiting Nutrient of Eutrophication in Reservoirs of Korea and the Suggestion of a Reinforced Phosphorus Standard for Sewage Treatment Effluent (국내 호수의 제한영양소와 하수처리장 방류수 인 기준 강화의 필요성)

  • Kim, Bomchul;Sa, Seung-Hwan;Kim, Moonsook;Lee, Yunkyoung;Kim, Jai-Ku
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.512-517
    • /
    • 2007
  • The limiting nutrient of eutrophication in freshwater bodies in Korea was examined and the phosphorus concentration standard for sewage treatment effluent was discussed. The weight ratio of N/P in 13 major reservoirs showed the range of 18 to 163, which implies phosphorus is more limited than nitrogen for algal growth. In the correlation analysis phosphorus showed higher correlation with chlorophyll-a concentration than with nitrogen. In the algal bioassay phosphorus spike test enhanced algal growth in all 25 samples of five reservoirs, while nitrogen was found to co-limit only in four samples. It confirms that phosphorus is the only limiting nutrient for eutrophication in Korean reservoirs. As many reservoirs are eutrophic in Korea, phosphorus control is critical for the management of water quality. The phosphorus standard of sewage treatment effluent in Korea was compared with other countries, and it can be concluded that phosphorus standard is too high to be effective in eutrophication control and a lower phosphorus standard is essential for the water quality improvement.

Bacterial Removal Efficiencies by Unit Processes in a Sewage Treatment Plant using Activated Sludge Process (활성슬러지공정 하수종말처리장의 단위공정별 세균 제거효율)

  • Lee, Dong-Geun;Jung, Mira;Sung, Gi Moon;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.871-879
    • /
    • 2010
  • To figure out the removal efficiency of indicator and pathogenic bacteria by unit processes of a sewage treatment plant using activated sludge process, analyses were done for incoming sewage, influent and effluent of primary clarifier, aeration tank, secondary clarifier and final discharge conduit of the plant. A matrix of bacterial items (average of bacterial reduction [log/ml], p value of paired t-test, number of decreased cases of twenty analyses, removal percentage only for decreased cases) between incoming sewage and final effluent of the plant were heterotrophic plate counts (1.54, 0.000, 20, 95.01), total coliforms (1.38, 0.000, 19, 83.94), fecal coliforms (0.90, 0.000, 20, 94.84), fecal streptococci (0.90, 0.000, 20, 98.08), presumptive Salmonella (0.23, 0.561, 7, 99.09), and presumptive Shigella (1.02, 0.002, 15, 92.98). Total coliforms, fecal coliforms, heterotrophic plate counts, and fecal streptococci showed highest decrease through secondary clarifier about 1-log (p<0.001) between 88% and 96%, and primary clarifier represented the significant (p<0.05) decrease. However, final effluent through discharge conduit showed higher total coliforms and fecal streptococci than effluent of secondary clarifier (p<0.05). In addition, final effluent once violated the water quality standard while effluent of secondary clarifier satisfied the standard. Hence some control measures including elimination of deposits in discharge conduit or disinfection of final effluent are necessary.

Study on Natural Wastewater Treatment Systems by Constructed Wetland for Rural Area (인공습지에 의한 농촌오수처리에 관한 연구)

  • 윤춘경;권순국;김형중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.55-63
    • /
    • 1997
  • Constructed wetland system which can be applied to the rural wastewater treatment system was examined by pilot plant in Kon-Kuk University. Hydraulic loading rate of wastewater was about 0.16m$^3$/m$^2$. day and theoretical detention time in the system was 1.38 days. The effluent of the septic tank for the school building was applied as inflow to the system. The influent concentration of DO was zero but effluent was up to 4.37mg/${\ell}$ which implies that oxygen was supplied enough from atmosphere by reaeration to support biological activity of the system. Average influent concentration of BOD was 104mg/${\ell}$ and effluent was 24mg/${\ell}$ with average removal rate of 76%. Average influent concentration of COD was 215mg/${\ell}$ and effluent was 63mg/${\ell}$ with average removal rate of 70 % . Average influent concentration of SS was 78mg/${\ell}$ and effluent was 10mg/${\ell}$ with average removal rate of 87%. Two components, BOD and SS, are regulated by law to keep maximum water quality standard of 80mg/${\ell}$ when daily outflow rate is less than 100$m^3$/day which is the case of most rural communities. Therefore, the results from the experiment showed that constructed wetland system can meet the water quality standard easily. Average influent concentration of total nitrogen was 165mg/lwhich is relatively higher than normal wastewater, and effluent was about 156mg/${\ell}$ with average removal rate of only 6%. Average influent concentration of total phosphorus was 41 mg/${\ell}$ and effluent was 6mg/${\ell}$ with average removal rate of 87%. Overall, constructed wetland system was thought to be effective to treat wastewater if nitrogen removal mechanism is improved. Considering low cost, less maintenance, and high treatability, this system can be a practical alternative for the wastewater treatment in rural area The experiment was performed during the summer and fall season, and treatment efficiency of the system is expected to decrease in low temperature. therefore, further study including temperature is required to evaluate feasibility of the system more in detail.

  • PDF

Study on the Improvement of Water Quality by the strengthening of T-P effluent standard for Environmental Facilities in Paldang Basin (환경기초시설의 인 기준 강화에 따른 팔당호 유입 수계의 수질개선 효과분석)

  • Jeong, Won-Gu;Han, Young-Han;Rim, Jay-Myung
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.125-135
    • /
    • 2010
  • The influences on water quality of each river by effluents from environmental facilities $located^{*}$ in 14 unit watersheds of North- and South-Han River, and Gyungan-cheon were analyzed. Also, the water quality modeling for study area was carried out to analyze the improvement effect of water quality by the strengthening of T-P effluent standard of environmental facilities. For the calibration and verification of model, water quality data and effluent loading calculated for 2006 were used. Data of low water period were used for calibration, and normal water period for verification. The results of calibration and verification were well matched with the real water quality dataset of revers. Also, the validity of the results were estimated using RI (Reliability Index) method. When the T-P effluent standards for environmental facilities were strengthened, T-P concentrations were predicted to improve from $0.025mg/{\ell}$ to $0.023mg/{\ell}$ in the outlet location of North-Han River, from $0.056mg/{\ell}$ to $0.040mg/{\ell}$ for South-Han River,and from $0.233mg/{\ell}$ to $0.146mg/{\ell}$ for Gyungan-cheon. Also, the T-P concentrations of tributaries including Jojong-cheon, Dal-cheong, Sumgang, Chungmi-cheon, Bokha-cheon, Heuk-cheon, and Wonju-cheon were predicted to improve from $0.063mg/{\ell}$ to $0.010mg/{\ell}$, from $0.091mg/{\ell}$ to $0.053mg/{\ell}$, from $0.199mg/{\ell}$ to $0.100mg/{\ell}$, from $0.168mg/{\ell}$ to $0.148mg/{\ell}$, from $0.186mg/{\ell}$ to $0.105mg/{\ell}$, from $0.019mg/{\ell}$ to $0.013mg/{\ell}$, and from $0.822mg/{\ell}$ to $0.236mg/{\ell}$, respectively.

  • PDF

Evaluation of Whole Effluent Toxicity (WET) Proficiency Testing for Water Quality Measurement Agencies in Korea (국내 수질측정대행업에 대한 생태독성 숙련도시험 평가)

  • Park, Woo Sang;Kim, Sang Hun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.568-573
    • /
    • 2013
  • In this study, we conducted whole effluent toxicity (WET) proficiency testing based on the results which $EC_{50}$ value of 3 types (A, B, C) unknown samples calculated from 32 water quality measurement agencies in Korea. WET proficiency testing was expected to their improve of analysis skill and ensure reliability of analysis results. Ultimately, it is intended to promote the reliable enforcement of WET. WET proficiency testing was evaluated using the z-score, robust z-score and the results showed that 30 participating agencies were "compliance". In addition, $EC_{50}$ values of "unknown sample A" were the normal distribution. Therefore, "unknown sample A" was considered as the most suitable standard toxicity substance.

A Study on the Management System Improvement of Effluent Water Qualities for Public Sewage Treatment Facilities in Korea (우리나라 공공하수처리시설의 방류수 수질 관리체계 개선방안 고찰 - 미국, 일본, 유럽의 공공하수처리시설 방류수 수질 관리제도를 중심으로 -)

  • Jeong, Donghwan;Choi, Incheol;Cho, Yangseok;Chung, Hyenmi;Kwon, Ohsang;Yu, Soonju;Yeom, Icktae;Son, Daehee
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.296-314
    • /
    • 2014
  • In recent years, Ministry of Environment (MOE) has been implementing a phased strengthening of the effluent standards for sewage treatment plants. In this regard, a comprehensive system should be developed to help check the appropriateness of such standards by specifying the grounds for standard-setting and investigating the current operation of sewage treatment plants clearly. It is necessary to establish a new standard-setting system for the effluent that is in a closer connection with the environmental criteria and rating systems. In the United States, the federal government provides guidelines on the least provisions and requirements for the Publicly Owned Treatment Works (POTWs). Local governments set the same or stricter guidelines that reflect the characteristics of each state. In Japan, the sewage treatment plants are subject to both the effluent standards and the discharge acceptable limits to pubic waters under the sewerage law. Specific requirements and limits are set in accordance with local government regulations. The European Union imposes sewage treatment plants with different provisions for effluent standards, depending on the sensitivity of public waters to eutrophication. The effluent standards for sewage treatment plants are classified by pollutant loads discharged to receiving waters. MOE also needs to introduce systems for setting new parameter standards on a POTW effluent by applying statistical means and treatment efficiencies or optimal treatment techniques, as seen in the cases of the US National Pollutant Discharge Elimination System (NPDES) or the EU Integrated Pollution Prevention and Control (IPPC).