• 제목/요약/키워드: Effluent rate

검색결과 553건 처리시간 0.026초

오염물질 배출원과 하천에서의 유기탄소 분포 특성 (The Fractionation Characteristics of Organic Matter in Pollution Sources and River)

  • 김호섭;김상용;박지형;한미덕
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

Enhancement of Scenedesmus sp. LX1 Biomass Production and Lipid Accumulation Using Iron in Artificial Wastewater and Domestic Secondary Effluent

  • Zhao, Wen-Yu;Yu, Jun-Yi;Wu, Yin-Hu;Hong, Yu;Hu, Hong-Ying
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.131-138
    • /
    • 2014
  • While coupling wastewater treatment with microalgal bioenergy production is very promising, new approaches are needed to enhance microalgal growth and lipid accumulation in wastewater. Therefore, this study investigated the effect of iron on the growth, nutrient removal, and lipid accumulation of Scenedesmus sp. LX1 in both artificial wastewater and domestic secondary effluents. When increasing the iron concentration from 0 to 2 mg/l in the artificial wastewater, the biomass production of Scenedesmus sp. LX1 increased from 0.17 to 0.54 g/l; the nitrogen and phosphorus removal efficiency increased from 15.7% and 80.6% to 97.0% and 99.2%, respectively; and the lipid content was enhanced 84.2%. The relationship between the carrying capacity/maximal population growth rate of Scenedesmus sp. LX1 and the initial iron concentration were also in accordance with the Monod model. Furthermore, when increasing the iron concentration to 2 mg/l in four different domestic secondary effluent samples, the lipid content and lipid production of Scenedesmus sp. LX1 was improved by 17.4-33.7% and 21.5-41.8%, respectively.

온도 및 pH 변화에 따른 연속 및 간헐 포기식 활성슬러지법의 처리 특성 (The Treatment Characteristics of Intermittent Aeration and Conventional Activated Sludge Processes According to the Changes of Temperature and pH)

  • 이정수;이태규
    • 대한환경공학회지
    • /
    • 제22권6호
    • /
    • pp.1001-1009
    • /
    • 2000
  • 본 연구는 온도와 pH변화에 따른 처리특성을 S-COD, T-COD, SS, 처리율의 경시변화, 슬러지전환율, SVI 및 유출수 pH의 변화 등을 중심으로 연속포기식과 간헐포기식의 활성슬러지법의 처리특성을 비교하였다. 실험결과 온도보청계수($\theta$)는 연속포기시 1.0~1.061, 간헐포기시는 1.0~1.086으로 나타나 극미하기는 하나 간헐포기시가 온도에 민감한 것으로 나타났으며, 슬러지전환율은 간헐포기시가 연속포기시에 비해 적은 것으로 나타나 보다 경제적이었다. 한편 pH를 변화시킬 경우 양 반응기 모두 산 쪽에서 미미한 악화를 보이나 알칼리 쪽에서는 개선됨을 보여주었고, 전체적으로 처리수의 수질과 유출수의 pH 변화폭 등을 고려할 때 연속포기시에 비해 간헐포기시가 양호하였다.

  • PDF

우리나라에서 홍수터여과의 가능성에 대한 기초조사 (A Primary Study on the Potential of Floodplain Filtration in Korea)

  • 최명호;김경수;김승현
    • 대한환경공학회지
    • /
    • 제31권1호
    • /
    • pp.70-78
    • /
    • 2009
  • 지형도를 이용하여 전국 주요하천의 홍수터 면적을 조사하였고, 원판형 부압침투계를 이용하여 홍수터 토양의 투수특성을 조사하였다. 문헌조사와 불포화 흐름해석용 코드를 이용하여 홍수터에서 도시하수의 2차 처리수에 대한 토양처리의 가능성도 평가하였다. 이들 자료를 바탕으로 우리나라의 홍수터여과 용량을 산정하였다. 연구결과 우리나라의 홍수터는 토양여과에 적합한 표층토를 가지며, 하천연장 전체에 걸쳐 홍수터가 골고루 분포되어 있어서 홍수터여과가 하수의 추가처리로 활용되기에 유리한 여건임을 알 수 있었다. 우리나라 전체의 홍수터여과 용량은 약 182,000,000 $m^3$/day이고, 대부분의 하천들은 2차 처리수를 모두 홍수터여과를 통해 추가적으로 처리할 수 있을 것으로 계산되어 이 공법을 적용할 경우 하천수질이 개선 될 것이라고 기대한다. 또한, 본 공법은 상수원수의 수질개선에도 활용될 수 있을 것으로 기대되었다.

Wastewater from Instant Noodle Factory as the Whole Nutrients Source for the Microalga Scenedesmus sp. Cultivation

  • Whangchenchom, Worawit;Chiemchaisri, Wilai;Tapaneeyaworawong, Paveena;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.283-287
    • /
    • 2014
  • Cultivation of microalgae using wastewater exhibits several advantages such as nutrient removal and the production of high valuable products such as lipid and pigments. With this study, two types of wastewater from instant noodle factory; mixed liquor suspended solids (MLSS) and effluents after sedimentation tank were investigated for green microalga Scenedesmus sp. cultivation under laboratory condition. Optimal wastewater dilution percentage was evaluated in 24 wells microplate. MLSS and effluent without dilution showed the highest specific growth rate (${\mu}$) of $1.63{\pm}0.11day^{-1}$ and $1.57{\pm}0.16day^{-1}$, respectively, in which they were significantly (p < 0.05) higher than Scenedesmus sp. grown in BG11 medium ($1.08{\pm}0.14day^{-1}$). Ten days experiment was also conducted using 2000 ml Duran bottle as culture vessel under continuous light at approximately 5000 lux intensity and continuous aeration. It was found that maximum biomass density of microalgae cultivated in MLSS and effluent were $344.16{\pm}105.60mg/L$ and $512.89{\pm}86.93mg/L$ respectively and there was no significant (p < 0.05) difference on growth to control (BG11 medium). Moreover, cultivation microalgae in wastewater could reduce COD in wastewater by 39.89%-73.37%. Therefore, cultivation of Scenedesmus sp. in wastewater from instant noodle factory can yield microalgae biomass production and wastewater reclamation using photobioreactor simultaneously.

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • 제16권6호
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구 (Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm)

  • 장영호;이수문;김웅수;강진영
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

총인슬러지의 1차 침전지 반송에 따른 하수처리장 고형물 제거특성 연구 (Evaluation of Solids Removal Characteristics on Sewage Treatment Plants Using T-P sludge Return into the Primary Settling Tank)

  • 김종오;정동기;권혜정;황준석
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.73-80
    • /
    • 2018
  • In this study, the solids removal characteristics using T-P sludge generated from PACl coagulation were analyzed by laboratory scale and full scale experiment. As the amounts of T-P sludge injection into the raw sewage influent increased at the rate of 0, 1, 2, 3, 4 %, the suspended solids concentrations after 20 minutes setting test decreased to 210, 137, 91, 64, 43 mg/L, respectively. The filtration time required for dewatering test of the raw sewage influent decreased to 982, 728, 658, 581, 492 sec for 0, 1, 2, 3, 4% of T-P sludge injection, respectively. As the amounts of PACl coagulant into the effluent from final setting tank increased at 0, 10, 20, 30, 40 mg/L, the required filtration times for T-P sludge increased into 12.3, 41.7, 53.7, 67.2, 79.5 sec and the dewaterability of T-P sludge decreased. After T-P sludge returned into the primary settling tank on J-si sewage treatment plants, the effluent concentrations of COD, SS, T-N and T-P from primary settling tank into bioreactor decreased by 35.9, 27.9, 22.2, and 52.6% due to the coagulation effects of the T-P sludge. Finally, it was found that the return of T-P sludge into the primary settling tank could result into the sludge reduction having a lower water content of 3.03% p than in case of the only T-P sludge dehydration.

Enhanced nitrogen removal from high-strength ammonia containing wastewater using a membrane aerated bioreactor (MABR)

  • Arindam Sinharoy;Ji-Hong Min;Chong-Min Chung
    • Membrane and Water Treatment
    • /
    • 제15권2호
    • /
    • pp.59-66
    • /
    • 2024
  • This study evaluated the performance of a membrane aerated biofilm reactor (MABR) for nitrogen removal from a high-strength ammonia nitrogen-containing wastewater. The experimental setup consisted of four compartments that are sequentially anaerobic and aerobic to achieve complete nitrogen removal. The last compartment of the reactor setup contained a membrane bioreactor (MBR) to reduce sludge production in the system and to obtain a better-quality effluent. Continuous experiment over a period of 47 days showed that MABR exhibited excellent NH4+-N removal efficiency (99.5%) compared to the control setup without MABR (56.5%). The final effluent NH4+-N concentration obtained in the MABR was 2.99±1.56 mg/L. In contrast to NH4+-N removal, comparable TOC removal values in the MABR and the control reactor (99.2% and 99.3%, respectively) showed that air supply through MABR is much more critical for denitrification than for organic removal. Further study to understand the effect of air supply rate and holding pressure on NH4+-N removal in MABR revealed that an increase in both these parameters positively impacted reactor performance. These parameters are related to oxygen supply to the biofilm formed over the membrane surface, which in turn influenced NH4+-N removal in MABR. Among the two different strategies to control biofilm over the membrane surface, results showed that scouring for a duration of 10 min on a weekly basis, along with mixing air supply, could be an effective method.

Automatic Control Of Dissolved Oxygen In Activated Sludge Aeration Tank

  • Park, Kwang-Soo;Heo, Nam-Hyo;Lee, Hae-Goon;Han, Gee-Baek;Kim, Chang-Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권2호
    • /
    • pp.113-119
    • /
    • 1999
  • The quality of the effluent from an activated sludge aeration tank can deteriorate when the substrate removal rate decreases due to an abrupt reduction in the DO concentration, which is affected by such operating conditions as the loading rate, temperature, wastewater composition, and so on. In this research, a DO control system that includes a PI (proportional-integral) controller/Hiraoka controller was developed and applied to a pilot-scale activated sludge process, then its acceptability was estimated. The applicability of the respiration rate to DO control was also estimated. The respiration rate indicated a variety of input organic loading rates, which is the main disturbance to the DO concentration in an aeration tank. When the influent concentration incrementally decreased and increased between CODcr 1,000 mg/l and 100 mg/l, the control system with a PI controller exhibited a good llperformance-the average DO concentrations were 2.00$\pm$0.14 mg/l and 1.88$\pm$0.15 mg/l (set value was 2.0 mg/l), respectively, and the settling time was just 10 minites. When the control system was operated for 4 days, the DO concentration was 1.99$\pm$0.18 mg/l and 32.6% of the air flowrate was saved. However, the fluctuations in the respiration rates and air flowrates were severe, which could be harmful to the stability of the biomass and mechanical stability of the blower. A possible approach to solve this problem may be the simultaneous control of the loading rate and DO concentration.

  • PDF