• 제목/요약/키워드: Effluent Water Quality

검색결과 530건 처리시간 0.024초

강원 영서지역 하수처리장이 수질에 미치는 영향 (Effect of Municipal Sewage Treatment Plant on Water Quality in Western Kangwon Area)

  • 허인량;최지용;김영진;정의호
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.235-240
    • /
    • 2005
  • The effects of municipal sewage treatment plants on the water quality and effluent loading were investigated. BOD removal rates from Wonju, Hoengseong, and Hongcheon municipal sewage treatment plants were $88.9\%,\;80.6\%,\;90.7\%$ and T-P removal rates were $47.3\%,\;56.5\%,\;71.6\%,$ respectively. Also, BOD effluent leading from WonJu, Hoengseong, and Hongcheon treatment plants were 1,520 kg/day, 75 kg/day, 55 kg/day and T-P effluent loading were 203.9 kg/day, 4.2 kg/day, 4.0 kg/day, respectively. In terms of water quality distribution by distance of flow, BOD of the Seom river rapidly rose from 1.6 mg/l to 4.0 mg/l and T-P rose from 0.034 mg/l to 0.321 mg/l. Also BOD of the Hongcheon river showed a slowly rise from 1.1 mg/l to 1.4 mg/l and T-P from 0.011 mg/l to 0.026 mg/l. In conclusion, the effects of municipal sewage treatment plants on the water quality proved that T-P was higher than BOD. Consequently, in order to improve water quality, it is necessary to adopt an advanced sewage treatment system like nutrient removal.

인공습지의 농촌지역 오수정화시설에 적용가능성 연구 (Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area)

  • 윤춘경;권순국;권태영
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

수계의 비점오염원 관리 - 대청호를 중심으로 (Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea)

  • 이종호
    • 환경영향평가
    • /
    • 제9권3호
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

수질오염총량관리를 위한 환경기초시설 배출수질의 통계적 평가방법 개선 : 선형보간법의 백분위수방법 (Implementation of the Calculation Method for 95% Upper Limit of Effluent Water Quality of Sewage Treatment Plant for Total Maximum Daily Loads : Percentile Ranking Method)

  • 박재홍;김동우;오승영;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.676-681
    • /
    • 2008
  • The evaluation of the effluent water quality of sewage treatment plant is one of the most important factor in calculating total maximum daily loads (TMDLs). Current method to calculate 95% upper limit of effluent water quality of sewage treatment plant assuming normal distribution of data needs to be implemented in case of non-normal distribution. We have investigated the applicability of percentile ranking method as a non-parametric statistical analysis in case of non-normal distribution of data.

산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교 (Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent)

  • 이선희;이학성
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

국내 수질측정대행업에 대한 생태독성 숙련도시험 평가 (Evaluation of Whole Effluent Toxicity (WET) Proficiency Testing for Water Quality Measurement Agencies in Korea)

  • 박우상;김상훈
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.568-573
    • /
    • 2013
  • In this study, we conducted whole effluent toxicity (WET) proficiency testing based on the results which $EC_{50}$ value of 3 types (A, B, C) unknown samples calculated from 32 water quality measurement agencies in Korea. WET proficiency testing was expected to their improve of analysis skill and ensure reliability of analysis results. Ultimately, it is intended to promote the reliable enforcement of WET. WET proficiency testing was evaluated using the z-score, robust z-score and the results showed that 30 participating agencies were "compliance". In addition, $EC_{50}$ values of "unknown sample A" were the normal distribution. Therefore, "unknown sample A" was considered as the most suitable standard toxicity substance.

S 하수처리장 반류수가 방류수 수질에 미치는 영향 (The Effect of Reject Water on the Water Quality of Effluent from S Sewage Treatment Plant)

  • 김미란;김경희;박해식;강동효;이제근
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.323-329
    • /
    • 2010
  • To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.

생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측 (A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model)

  • 이인철;윤석진;김현주
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

유역하수도에서 강화된 방류수 수질 준수농도 적용을 위한 진위천수계 수질영향 평가 (A Study on Impact Assessment for Application of Strengthened Compliance Concentration of Effluent Limit from PSTWs in the Jinwee-stream Watershed)

  • 정동환;조양석;안기홍;류지철;안경희;정현미;권오상
    • 환경영향평가
    • /
    • 제24권5호
    • /
    • pp.397-406
    • /
    • 2015
  • 2013년 시행된 유역하수도정비계획에서는 유역별 수질상황을 고려하여 하수처리시설별 방류수 수질 준수농도(기준)를 별도로 적용하는 것이 가능하다. 유역의 중권역 목표기준 또는 수질오염총량관리 목표수질을 달성하기 위하여 유역하수도 제도 도입에 따라 유역 내 지역별 시설규모별 하수처리시설에 대한 방류수 수질 준수농도(안)을 설정하는 것이 필요하다. 유역환경청에서 수립하고 있는 유역하수도정비계획 수립 시 공공하수처리시설 방류수 수질 준수농도(기준)을 설정하는데 있어 II지역인 미호천유역의 경우 BOD 5 mg/L에서 3 mg/L, II III지역이 혼재되어 있는 영산강 상류유역의 경우 BOD 5~10 mg/L에서 3 mg/L로, IV지역인 안성천유역의 경우 BOD 10 mg/L에서 5 mg/L로 일률적으로 강화하도록 계획하고 있다. 이렇게 일률적으로 정하고 있는 준수농도에 대해 하수 처리기술, 유역특성을 고려한 유역하수도 공공하수처리시설의 방류수 수질 준수농도를 설정하는 방법을 제시하는 것이 필요하다. 본 연구에서는 공공하수처리시설 방류수 수질 준수농도 강화(안)을 설정할 때 이 강화된 준수농도가 공공수역 수질에 미치는 영향을 평가하여 어떤 강화(안)이 유역관리에 좀 더 효과적인지 고찰하였다.

우리나라 공공하수처리시설의 TOC 배출특성 및 관리방안 연구 (Characteristics of TOC in effluent discharge from public sewage treatment works in korea)

  • 정동환;최인철;조양석;안경희;정현미;권오상;박후원;신현상;허진
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.657-668
    • /
    • 2014
  • Under Korea's Enforcement Decree of the Framework Act on Environmental Policy amended in 2013, total organic carbon (TOC) is newly added as water quality parameter to assess organic pollution in water and aquatic ecosystem. To meet the TOC requirement and improve quality of effluent discharged into public watershed, it is also necessary to develop standards for TOC in effluent from public sewage treatment works (PSTWs). In this study, we reviewed the characteristics and removal efficiency of TOC in influent and effluent of PSTWs. The study found that phosphorus treatment process removed not only soluble phosphorus but also a portion of TOC remaining after the secondary treatment process. TOC concentration in effluent from PSTWs operated in tandem with industrial wastewater treatment work was higher due to influx of insoluble substances from the industrial wastewater treatment work. In order to lay a foundation for the management of TOC from PSTWs, it is necessary to carry out research on TOC from different perspectives. For example, studies on the generation mechanism of TOC and the impact of TOC on drinking water resources, assessment of effluent qualities through monitoring, and development of measures to control TOC for the preservation of aquatic ecosystem are needed.