• Title/Summary/Keyword: Efficient Operation Management

Search Result 1,126, Processing Time 0.031 seconds

Secure and Efficient Storage of Video Data in a CCTV Environment

  • Kim, Won-Bin;Lee, Im-Yeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3238-3257
    • /
    • 2019
  • Closed-circuit television (CCTV) technology continuously captures and stores video streams. Users are typically required by policy to store all the captured video for a certain period. Accordingly, increasing the number of CCTV operation cycles and photographing positions expands the amount of data to be stored. However, expanding the available storage space for video data incurs increased costs. In recent years, this problem has been addressed with cloud storage solutions, which enable multiple users and devices to access and store data simultaneously. However, because of the large amount of data to be stored, a vast storage space is required. Consequently, cloud storage administrators need a way to store data more efficiently. To save storage space, deduplication technology has been proposed to prevent duplicate storage of the same data. However, because cloud storage is hosted on remote servers, data encryption technology must be applied to address data exposure issues. Although deduplication techniques for encrypted data have been studied, there have been various security vulnerabilities. We attempted to solve this problem by addressing various issues such as poison attacks, property forgery, and ownership management while removing the redundant data and handling the data more securely.

A Study on the Improvement in Productivity and Safetiness for Calcination Process of Automotive Catalyst by Using Design of Experiment (실험계획을 통한 자동차 촉매 소성 공정의 생산성 향상과 안정성 증대 연구)

  • Jung, Chule-kyou;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • The diesel engine generate many pollutants such as PM(Particulate matter) and NOx(Nitrogen oxide). So the SCR(Selective catalytic reduction) must be required to meet the emission standard. The SCR catalyst market is growing rapidly, and the automobile markets using alternative energy sources are growing rapidly. This study deals with optimization of the calcination process the manufacturing process of SCR catalyst to be competitive. The calcination process is a bottleneck and it is required to optimize productivity and accept to be safety, But we cannot trade off anything in terms of safety. We applied DOE(Design of experiments) among many research methods performed in various fields. In order to achieve quality and productivity optimization. The dependent variables in the DOE were selected as NO Conversion(%). The independent variables were selected as the calcination temperature, soaking time and fan speed RPM. the CCD(Central composite designs) constructs response surface using the data onto experience and finds optimum levels within the fitted response surfaces. Our tests are our stability guarantee and efficient together with operation.

Z-score Based Abnormal Detection for Stable Operation of the Series/Parallel-cell Configured Battery Pack (직병렬조합 배터리팩의 안전운용을 위한 Z-score 기반 이상 동작 검출 방법)

  • Kang, Deokhun;Lee, Pyeong-Yeon;Kim, Deokhan;Kim, Seung-Keun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.390-396
    • /
    • 2021
  • Lithium-ion batteries have been designed and used as battery packs with series and parallel combinations that are suitable for use. However, due to its internal electrochemical properties, producing the battery's condition at the same value is impossible for individual cells. In addition, the management of characteristic deviations between individual cells is essential for the safe and efficient use of batteries as aging progresses with the use of batteries. In this work, we propose a method to manage deviation properties and detect abnormal behavior in the configuration of a combined battery pack of these multiple battery cells. The proposed method can separate and detect probabilistic low-frequency information according to statistical information based on Z-score. The verification of the proposed algorithm was validated using experimental results from 10S3P battery packs, and the implemented algorithm based on Z-score was validated as a way to effectively manage multiple individual cell information.

Revision and catagorization of evaluation criteria for state change factors in agricultural reservoirs

  • Jae Woong Shim;Young Hak Lee;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.707-717
    • /
    • 2022
  • As the variability of recent rainfall is increasing, it is becoming important to recognize the possibility of changes in the current reservoir state in advance and to inspect the stability based on accurate evaluation standards. However, the evaluation standards for the state change factors of reservoirs are still not suitable for agricultural reservoirs and thus much improvement is needed. Therefore, in this study, the evaluation criteria for state change factors specialized for small reservoirs were categorized and standards were prepared by considering factors that may cause state changes on the dam crest, upstream slope, and downstream slope of the embankment. The categorized results were configured based on the number of mentions of the precision safety inspection report on major defects in 102 reservoirs and the defect factors found in field investigations. The findings of the study indicated that the current state change standards require many revisions for excessive or unnecessary state change factors in the reservoir. Specifically, the deletion of measurement gauges not applicable to the reservoir, the addition of defects found in the reservoir, and the scope of use of the term were proposed. The results of this study can contribute to efficient system operation and management by improving the deficiencies in the system and introducing a new state change factor.

REAL-TIME 3D MODELING FOR ACCELERATED AND SAFER CONSTRUCTION USING EMERGING TECHNOLOGY

  • Jochen Teizer;Changwan Kim;Frederic Bosche;Carlos H. Caldas;Carl T. Haas
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.539-543
    • /
    • 2005
  • The research presented in this paper enables real-time 3D modeling to help make construction processes ultimately faster, more predictable and safer. Initial research efforts used an emerging sensor technology and proved its usefulness in the acquisition of range information for the detection and efficient representation of static and moving objects. Based on the time-of-flight principle, the sensor acquires range and intensity information of each image pixel within the entire sensor's field-of-view in real-time with frequencies of up to 30 Hz. However, real-time working range data processing algorithms need to be developed to rapidly process range information into meaningful 3D computer models. This research ultimately focuses on the application of safer heavy equipment operation. The paper compares (a) a previous research effort in convex hull modeling using sparse range point clouds from a single laser beam range finder, to (b) high-frame rate update Flash LADAR (Laser Detection and Ranging) scanning for complete scene modeling. The presented research will demonstrate if the FlashLADAR technology can play an important role in real-time modeling of infrastructure assets in the near future.

  • PDF

On a Study of Reliability-Based MTTF Derivation and Parts Requirement Prediction for Securing Safety of Robot-Based Cargo Loading System (화물 상차 로봇 시스템의 안전성 확보를 위한 신뢰성 기반 MTTF 도출 및 부품소요량 예측 연구)

  • Myung-Sung Kim;Young-Min Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • In modern society, the delivery service market has grown explosively due to rapid changes in social structure and the recent COVID-19 pandemic. Therefore, various problems such as injury to workers and an increase in human accidents are occurring due to the loading and unloading of parcels. In order to solve this problem, domestic company n is developing a "robot-based cargo loading and unloading system". In developing a new technology system, quantitative reliability targets should be set for efficient operation and development. In this paper, reliability analysis was conducted through field data for the pneumatic gripper of the "robot-based cargo loading system". The reliability of the failure data was analyzed to estimate the distribution parameters and MTTF. Random data was derived for the probability of occurrence of a failure with the estimated value. By repeating the simulation to predict the number and year of failures according to the estimated parameters of the probability distribution, it was proposed as a method that reflects realistic probabilities rather than calculating with simple arithmetic using the average MTTF previously used in the field.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

SYSTEM MODELLING OF ON-SITE ENERGY CONSUMPTION PROFILE IN CONSTRUCTION SITES AND A CASE STUDY OF EARTH MOVING

  • Kyoo-Jin Yi
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.287-293
    • /
    • 2013
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. According to the greenhouse reduction scheme of Korean Government, construction sector targeted 7.1% reduction by 2020. Although this target is not higher than other industrial sectors, it is not easy to achieve the reduction target without radical advance in technology, which cannot be expected to happen soon, considering the conservative characteristics of construction industry. Most researches on environmental issues focus on the issues related to energy saving matters during material production stage or maintenance stage, such as heating and insulation, and few deal with the issues directly related to the energy use in the construction sites. This research regards the operation of equipment for the on-site construction processes as a system and attempts to model the energy use processes related to the activities in construction sites, and provides simulation results of earth excavation and hauling processes. The result of this research is expected to aid construction planners estimating the time-based patterns of energy use and assessing greenhouse gas emission and to help selecting more energy efficient alternatives at the planning stage.

  • PDF

The Architecture Model for Defense Systems Test Works based on Systems Engineering (SE기반 무기체계 시험업무 아키텍처 모델 연구)

  • Taeheum Na;Dongeun Heo;Youngmin Kim;Jooyeoun Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.203-212
    • /
    • 2024
  • This paper describes the establishment of defense systems test works architecture model for the efficient operation of an expanded test organization and the provision of standardized test services after the integration of proving grounds in ADD. The system engineering vee model is applied to the defense system test works to define the project management model and the unit-test management model. In order to establish the defense systems test works architecture model, the process flow of test works, artifacts by life cycle, and interrelations between regulations and test works are explained, and Integrated Test Information System for implementation of architecture model is discussed. Through the defense systems test works architecture model presented in this study, it will contribute to quickly responding to the test requirements of complex and diverse defense systems, efficiently managing projects, and providing standardized test services.

Economic implications of optimal operating conditions in a full-scale continuous intermittent cycle extended aeration system (ICEAS) (실규모 연속유입간헐폭기 공정(ICEAS)에서 최적운전조건이 경제성에 미치는 영향)

  • Yong-jae Jeong;Yun-Seong Choi;Seung-Hwan Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.