• 제목/요약/키워드: Efficiency prediction

검색결과 1,535건 처리시간 0.024초

Residual DPCM in HEVC Transform Skip Mode for Screen Content Coding

  • Han, Chan-Hee;Lee, Si-Woong;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.323-326
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.

Novel Motion and Disparity Prediction for Multi-view Video Coding

  • Lim, Woong;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권3호
    • /
    • pp.118-127
    • /
    • 2014
  • This paper presents an efficient motion and disparity prediction method for multi-view video coding based on the high efficient video coding (HEVC) standard. The proposed method exploits inter-view candidates for effective prediction of the motion or disparity vector to be coded. The inter-view candidates include not only the motion vectors of adjacent views, but also global disparities across views. The motion vectors coded earlier in an adjacent view were found to be helpful in predicting the current motion vector to reduce the number of bits used in the motion vector information. In addition, the proposed disparity prediction using the global disparity method was found to be effective for interview predictions. A multi-view version based on HEVC was used to evaluate the proposed algorithm, and the proposed correspondence prediction method was implemented on a multi-view platform based on HEVC. The proposed algorithm yielded a coding gain of approximately 2.9% in a high efficiency configuration random access mode.

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발 (Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller)

  • 곽두영;이수갑
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.89-99
    • /
    • 2017
  • 멀티로터형 무인항공기는 군사용 목적뿐 아니라 항공 촬영 및 무인 택배 수단 등 민간 산업까지 그 활용 범위를 넓혀가고 있다. 무인항공기의 보다 폭넓은 활용을 위해서는 추진체인 프로펠러의 공력 효율 개선과 소음의 저감을 위한 연구가 선행되어야 하며, 이는 주어진 환경에서 공력 성능 및 소음을 예측할 수 있는 기술이 바탕이 되어야만 가능하다. 본 연구에서는 소형 무인항공기 프로펠러를 대상으로 공력 및 소음 예측 기법을 개발하고, 실제 측정을 통한 결과와의 비교를 통해 검증하였다. 분당 회전수의 변화에 따른 추력 및 토크와 주어진 위치에서의 주파수 스펙트럼 예측에서 모두 예측 기법의 신뢰성을 확보하였으며, 이를 통해 프로펠러의 형상 설계에 기반이 될 수 있는 기틀을 마련하였다.

VVC의 화면 내 예측에서 적응적 TBC를 사용하는 방법 (Adaptive TBC in Intra Prediction on Versatile Video Coding)

  • 이원준;박광훈
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.109-112
    • /
    • 2020
  • VVC는 화면 내 예측에서 67가지의 모드를 사용한다. 이때 화면 내 예측 모드 표현을 위한 데이터를 감소시키기 위하여 MPM(Most Probable Mode)을 사용한다. 시그널링 되는 모드가 MPM 후보 내에 존재하는 경우 MPM 리스트의 해당 index를 송신하는 방법을 사용하고 MPM 후보 내에 존재하지 않는 경우에는 TBC 부호화를 적용한다. 화면 내 예측에서 TBC가 적용될 때 MPM 후보를 제외하고 낮은 번호의 모드 순서대로 3가지가 선택되어 5비트로 부호화되고 나머지 모드는 6비트로 부호화된다. 본 논문에서는 VVC의 화면 내 예측에서 사용하는 TBC 기술의 한계점을 알아보고 화면 내 예측에서 TBC를 사용할 때 기존의 방법보다 효율적으로 부호화 할 수 있는 적응적인 방법을 제안한다. 그 결과 기존의 부호화 방법과 비교해서 overall 부호화 성능이 AI와 RA에서 각각 0.01%, 0.04%의 부호화 효율이 증대되었다.

Fast Depth Video Coding with Intra Prediction on VVC

  • Wei, Hongan;Zhou, Binqian;Fang, Ying;Xu, Yiwen;Zhao, Tiesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3018-3038
    • /
    • 2020
  • In the stereoscopic or multiview display, the depth video illustrates visual distances between objects and camera. To promote the computational efficiency of depth video encoder, we exploit the intra prediction of depth videos under Versatile Video Coding (VVC) and observe a diverse distribution of intra prediction modes with different coding unit sizes. We propose a hybrid scheme to further boost fast depth video coding. In the first stage, we adaptively predict the HADamard (HAD) costs of intra prediction modes and initialize a candidate list according to the HAD costs. Then, the candidate list is further improved by considering the probability distribution of candidate modes with different CU sizes. Finally, early termination of CU splitting is performed at each CU depth level based on the Bayesian theorem. Our proposed method is incorporated into VVC intra prediction for fast coding of depth videos. Experiments with 7 standard sequences and 4 Quantization parameters (Qps) validate the efficiency of our method.

비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가 (Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem)

  • 정광석;김동균;윤주덕;라긍환;김현우;주기재
    • 생태와환경
    • /
    • 제43권1호
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

멀티미디어 무선 IP 망에서 핸드오프 호의 자원예측을 위한 LMS-위너 모델 (LMS-Wiener Model for Resources Prediction of Handoff Calls in Multimedia Wireless IP Networks)

  • 이진이;이광형
    • 한국통신학회논문지
    • /
    • 제30권2A호
    • /
    • pp.26-33
    • /
    • 2005
  • 무선 IP 망의 자원 예약 방식에서는 미래의 호가 요구하는 무선자원의 양을 정확히 예측함으로써 제한된 무선자원의 이용률을 높일 수 있다. 본 연구에서는 멀티미디어 무선 IP 망에서 미래의 핸드오프 호가 요구하는 무선자원(대역폭)의 양을 예측하는 LMS-Wiener 예측방법을 제안하고, 자원의 예측 오차양의 크기에 관해서 기존외 위너 모델링에 기초한 예측방법과 성능을 비교한다. 성능비교를 위한 트래픽 환경은 피코셀 구조의 무선 IP 망에서 장시간 호의 도착패턴이 일반적인 포아송 분포보다는 비포아송 분포를 보이므로, 핸드오프 호의 도착과정을 비 포아송 분포, 핸드오프 호의 채널 점유 시간도 비 지수 분포로 모델링 하였다. 시뮬레이션 결과 기존의 위너모델에 의한 방법에서는 예측시점이 경과함에 따라 예측 오차량의 크기가 증가하는 반면에 제안한 방법에서는 예측 오차량의 크기가 감소하는 수렴성을 보였다. 따라서 제안한 자원의 예측 방법이 기존의 방법보다 미래의 핸드오프 호가 필요로 하는 무선자원의 양을 상대적으로 정확히 예측함으로써, 필요이상의 과도한 자원의 예약으로 발생되는 무선자원의 낭비를 줄일 수 있음을 알 수 있다.

무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법 (Context-based Predictive Coding Scheme for Lossless Image Compression)

  • 김종호;유훈
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.183-189
    • /
    • 2013
  • 본 논문에서는 영상의 방향성에 따른 적응적 예측 기법과 컨텍스트 기반 엔트로피 부호화 방법을 주요 구성요소로 한 무손실 영상 압축 방법을 제안한다. 적응적 예측 기법에서는 부호화 픽셀을 중심으로 각 방향에 대한 상관도를 분석하고, 이를 이용하여 적절한 예측 픽셀을 선택한다. 또한 예측 에러를 더욱 줄이기 위하여 주변 픽셀의 복잡도 및 방향성을 이용한 컨텍스트 모델 기반 예측 에러 보정 과정을 수행한다. 정보이론의 관점에서 조건부 엔트로피에 의해 부호화 효율이 더욱 향상된다는 점을 이용하여 본 논문에서는 엔트로피 부호화 방식으로 컨텍스트 기반 Golomb-Rice 부호화를 적용한다. 실험결과 제안한 무손실 영상 압축 방식은 다양한 영상에 대해서 기존의 저 복잡도 및 고효율의 JPEG-LS에 비해 평균 1.3%의 압축효율 향상을 나타내었고, 특히 방향성이 뚜렷한 영상에 대해서 성능이 좋음을 알 수 있다.

머신러닝 기반 노지 환경 변수에 따른 예측 토양 수분에 미치는 영향에 대한 연구 (A study on the impact on predicted soil moisture based on machine learning-based open-field environment variables)

  • 정광훈;이명훈
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.47-54
    • /
    • 2023
  • 지구 온난화로 인해 갑작스러운 기후변화와 농업 생산성에 대한 이해가 점점 중요해지면서, 토양 수분 예측은 농업에서 핵심 주제로 떠오르고 있다. 토양 수분은 농작물의 성장과 건강에 큰 영향을 미치며, 적절한 관리와 정확한 예측은 농업 생산성 향상과 자원 관리의 핵심 요소이다. 이러한 이유로 토양 수분 예측은 농업 및 환경 분야에서 큰 주목을 받고 있다. 본 논문에서는 머신러닝 알고리즘인 랜덤 포레스트를 통하여 시범포를 이용하여 노지 환경 데이터를 수집하고 분석하여 데이터 특성들과 토양 수분의 상관관계를 구하고 토양 수분 실제 값과 예측값을 비교하였으며 비교 결과 예측률이 약 92%의 정확성을 갖는다는 것을 확인하였다. 추후 연구를 통해 작물의 생장 데이터 변수들을 추가하여 토양 수분 예측을 진행한다면 토양 수분에 따른 작물의 생장 속도, 적절한 관수 타이밍 등의 주요 정보를 정확하게 제어함으로써 작물의 품질 상승, 물 관리 효율 증가 등 생산성 및 자원 효율성에 좋은 영향을 미칠 것이라고 기대된다.