• 제목/요약/키워드: Efficiency prediction

검색결과 1,535건 처리시간 0.028초

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

HEVC 화면 내 예측을 위한 FAST 에지 검출 기반의 CU 분할 방법 (CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction)

  • 전승수;김남욱;전병우
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.484-492
    • /
    • 2016
  • High efficiency video coding (HEVC)은 H.264/AVC와 같은 이전 비디오 압축 표준 보다 더 높은 압축 효율을 갖는 최신 비디오 압축 표준이다. 화면 내 예측에서 최대 압축 단위 (LCU)들은 quadtree 구조를 통해 64x64부터 8x8까지의 크기를 갖는 더 작은 압축 단위 (CU)들로 나누어지고, 이들은 다시 예측 단위 (PU)들로 나누어진다. 가능한 크기까지 CU를 분할하면서 RDO (Rate Distortion Optimization) 과정을 통해 최적의 CU 분할 형태가 선택된다. 이 과정에서 HEVC는 많은 계산량을 필요로 한다. 본 논문에서는 HEVC의 계산량을 줄이기 위해, FAST (Features from Accelerated Segment Test) 코너 검출을 이용하여 화면 내 예측을 위한 고속 CU depth 결정 방법 (FCDD)을 제안한다. 제안하는 방법은 기존의 HEVC와 비교하여 약 0.7%의 BDBR 만큼의 적은 압축 성능 감소와 함께 부호화기에서 약 53.73%의 계산 시간을 감소시켰다.

H.264/AVC SVC를 위한 효율적인 잔여신호 업 샘플링 기법 (Efficient Residual Upsampling Scheme for H.264/AVC SVC)

  • 고경은;강진미;김성민;정기동
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권6호
    • /
    • pp.549-556
    • /
    • 2008
  • 멀티미디어 통신에서 융통성 있는 비주얼 콘텐츠를 제공하기 위해 ISO/IEC MPEG & ITU-T VCEG의 JVT는 H.264/AVC 표준에 기반을 둔 확장 형식으로 SVC를 표준화하였다. JVT는 H.264/AVC SVC의 압축 효율을 높이기 위해 기존 H.264/AVC에서 제공하는 인터 예측(inter prediction) 과 인트라 예측(intra prediction) 뿐만 아니라 계층 간의 중복요소을 제거하는 계층 간 예측을 추가로 수행한다. 계층 간 예측 방법은 기본계층에서 코딩된 데이타를 재사용하여 향상계층의 비트율-왜곡(rate-distortion) 효율을 향상시킨다. 그러나 계층 간 예측을 추가로 수행함으로써 계산 복잡도가 높아지는 문제점이 있다. 본 논문에서는 이러한 계산 복잡도를 감소시키기 위해 계층 간 예측 중 기본계층의 잔여 신호값을 이용하는 예측 과정에서 효율적인 잔여신호 업 샘플링의 기법을 제안한다. 실험 결과 코딩 효율을 유지하면서 예측과정의 계산복잡도를 약 30% 줄일 수 있었다.

Enhanced Markov-Difference Based Power Consumption Prediction for Smart Grids

  • Le, Yiwen;He, Jinghan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1053-1063
    • /
    • 2017
  • Power prediction is critical to improve power efficiency in Smart Grids. Markov chain provides a useful tool for power prediction. With careful investigation of practical power datasets, we find an interesting phenomenon that the stochastic property of practical power datasets does not follow the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD adopts a second prediction adjustment based on the differential data to reduce the stochastic error. Experimental results validate that the proposed SMMD achieves an improvement in terms of the prediction accuracy with respect to state-of-the-art solutions.

Waterjet 추진선의 초기 성능추정 (Preliminary power predication of waterjet driven craft)

  • 최군일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.90-94
    • /
    • 2001
  • A Waterjet has been widely used for the propulsion of various speed range of marine vehicles due to its many advantages compared with the conventional screw propellers. In this paper, a power prediction based on momentum flux method is presented for the preliminary estimation of required power and selection of propulsion system for the waterjet driven craft. A theoretical basis of the mechanism of the waterjet is given and some of the empirical formulas are given as well. Finally the influence of intake type and nozzle exit velocity on the efficiency will be discussed.

  • PDF

영상 부호화 효율을 위한 새로운 화면 내 부호화 방법 (New Intra Coding Scheme for Improving Video Coding Efficiency)

  • 김지언;노대영;정세윤;이진호;오승준
    • 방송공학회논문지
    • /
    • 제16권3호
    • /
    • pp.448-461
    • /
    • 2011
  • H.264/AVC는 새로운 부호화 기술에 의해 이전 비디오 부호화 표준보다 높은 성능을 나타낸다. 이러한 부호화 기술들 중 화면내 예측 부호화 기술은 부호화 효율을 높이는 중요 기술이다. H.264/AVC의 화면내 예측 부호화 기술에서 예측 모드 정보를 부호화하기 위해 최우선 모드를 이용하며 최우선 모드의 선택율은 매우 높다. 또한 일반적으로 자연 영상이나 동영상의 경우 균일한 특성을 나타내는 영역을 많이 포함하고 있으며, 이러한 영역은 주변 블록과의 상관도가 매우 높다. 따라서 주변 블록의 예측 모드, 화소 에지의 방향성을 이용하면 복호화기에서도 현재 블록의 최적의 예측 모드를 결정할 수 있다. 본 논문에서는 화면내 부호화 효율을 향상시키기 위해 예측 모드 정보를 전혀 전송하지 않는 복호화기 예측을 이용한 화면내 SKIP 부호화 모드를 제안한다. 제안하는 방법은 주변 블록의 정보만을 이용하여 예측 모드를 결정하고 기존의 예측/변환 방법을 이용하여 부호화를 실시하며 예측 모드 정보는 전혀 전송하지 않는다. 부호화가 생략된 예측 모드 정보는 주변 블록의 정보만을 이용하여 결정된 것이기 때문에 복호화기가 부호화기에서 결정된 예측 모드와 동일하게 결정할 수 있다. 실험 결과 제안하는 방법은 H.264/AVC의 참조 소프트웨어인 JM 17.0에 비하여 CIF 영상에서 1.40%, 720p 영상에서는 3.24%의 비트 감소를 나타내었다.

오일러리안 수치해석법을 이용한 전기집진기의 집진효율 예측에 관한 연구 (A Study on Prediction of Collection Efficiency of Electrostatic Precipitator Using Eulerian Numerical Analysis)

  • 박정호;전중환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.618-623
    • /
    • 2001
  • The transport of charged particles in electrostatic precipitator is investigated by Eulerian numerical analysis. Collection efficiencies are calculated using various combinations of the assumptions about flow field, turbulent diffusivity and boundary condition at collecting electrode. The characteristics of calculated collection efficiencies are compared with the trends of published experimental results. It is found that the collection efficiency for the case using nonuniform turbulent flow field, nonuniform turbulent diffusivity and zero concentration boundary condition at collecting electrode is the most suitable for the prediction of collection efficiency of electrostatic precipitator.

  • PDF

An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils

  • Xu, Xiang-Hua;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.313-322
    • /
    • 2020
  • This study focuses on a prediction approach of compaction compensation grouting efficiency in sandy soil. Based on Darcy's law, assuming that the grouting volume is equal to the volume of the compressed soil, a two-dimensional calculation model of the compaction compensation grouting efficiency was improved to three-dimensional, which established a dynamic relationship between the radius of the grout body and the grouting time. The effectiveness of this approach was verified by finite element analysis. The calculation results show that the grouting efficiency decreases with time and tends to be stable. Meanwhile, it also indicates that the decrease of grouting efficiency mainly occurs in the process of grouting and will continue to decline in a short time after the completion of grouting. The prediction three-dimensional model proposed in this paper effectively complements the dynamic relationship between grouting compaction radius and grouting time, which can more accurately evaluate the grouting efficiency. It is practically significant to ensure construction safety, control grouting process, and reduce the settlement induced by tunnel excavation.

전체적 밝기 변화와 지역적 밝기 변화를 고려한 HEVC에서의 가중치 예측 (Weighted Prediction considering Global Brightness Variation and Local Brightness Variation in HEVC)

  • 임성원;문주희
    • 방송공학회논문지
    • /
    • 제20권4호
    • /
    • pp.489-496
    • /
    • 2015
  • 본 논문에서는, 밝기 변화가 존재하는 영상에서의 부호화 효율을 향상하기 위해 새로운 가중치 예측 기술이 제안된다. 종래의 가중치 예측 기술은 참조 영상 단위로 지원되고 하나의 가중치 예측 계수 세트만을 사용하기 때문에 전체적 밝기 변화가 존재하는 영상에서만 효율적이다. 이러한 문제를 해결하기 위해 제안하는 알고리즘은 상황에 따라 세 가지 종류의 가중치 예측을 사용한다. 제안한 방법의 실험 결과는 기존 기술 대비 BD-rate 기준으로 최대 -10.2%의 성능 향상을 가져오며 인코더의 복잡도는 163%, 디코더의 복잡도는 약 101% 변화가 존재한다.

A Fast Intra-Prediction Method in HEVC Using Rate-Distortion Estimation Based on Hadamard Transform

  • Kim, Younhee;Jun, DongSan;Jung, Soon-Heung;Choi, Jin Soo;Kim, Jinwoong
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.270-280
    • /
    • 2013
  • A fast intra-prediction method is proposed for High Efficiency Video Coding (HEVC) using a fast intra-mode decision and fast coding unit (CU) size decision. HEVC supports very sophisticated intra modes and a recursive quadtree-based CU structure. To provide a high coding efficiency, the mode and CU size are selected in a rate-distortion optimized manner. This causes a high computational complexity in the encoder, and, for practical applications, the complexity should be significantly reduced. In this paper, among the many predefined modes, the intra-prediction mode is chosen without rate-distortion optimization processes, instead using the difference between the minimum and second minimum of the rate-distortion cost estimation based on the Hadamard transform. The experiment results show that the proposed method achieves a 49.04% reduction in the intra-prediction time and a 32.74% reduction in the total encoding time with a nearly similar coding performance to that of HEVC test model 2.1.