International standard specification, H.264/SVC improved from H.264/AVC, is set up so as to promote free use of huge multimedia data in various channel environments.;H.264/AVC is a international standard speicification for video compression, adopted and commercialized as standard for DMB broadcasting by JVT of ISO/IEC MPEG and ITU-T VCEG. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding. Among prediction technologies, 'inter-layer intra prediction' is to use co-located block of up sampled sublevels as a prediction signal. At this time, application of interpolation is one of the most important factors to determine encoding efficiency. SVC's currently using poly-phase FIR filter of 4-tap and 2-tap respectively to luma components. This paper is written for the purpose of analyzing encoding performance according to the interpolation. For this purpose, we applied poly-phase FIR filter of '2-tap', '4-tap' and '6-tap' respectively to luma components and then measured bit-rate, PNSR and running time of interpolation filter. We're expecting that the analysis results of this paper will be utilized for effective application of interpolation filter. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding.
HEVC (High Efficiency Video Coding)는 최근에 제안된 비디오 압축 표준으로서 이전의 비디오 압축 표준보다 두 배 이상의 부호화 효율을 가진다. 다양한 종류의 인트라 예측 블록과 모드는 HEVC의 높은 압축 성능과 연산 복잡도 증가의 주요 요인이다. 본 논문은 파이프라인과 인터리빙 기술을 사용하여 하드웨어 자원의 요구조건을 줄이는 반면 효율과 성능은 향상시킨 HEVC 용 인트라 예측 하드웨어 구조를 제시한다.
Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.
In the scalable extension of H.264/AVC, the codec is based on a layered approach to enable spatial scalability. In each layer, the basic concepts of motion compensated prediction and intra prediction are employed as in standard H.264/AVC. Additionally inter-layer prediction algorithm between successive spatial layers is applied to remove redundancy. In the inter-layer prediction, as the prediction we can use the signal that is the upsampled signal of the lower resolution layer. In this case, coding efficiency can be variable as the kinds of interpolation filter. In this paper, we investigate the approach to select the interpolation filter for residual signal in order to optimal prediction.
본 논문에서는 H.264/AVC의 성능향상을 위해 단방향 예측에 의한 $4{\times}4$ 인트라 부호화 방법을 제안한다. 최신의 동영상 압축 표준인 H.264/AVC에서는 $16{\times}16$과 $4{\times}4$ 인트라 예측 방법을 사용하고 있다. $4{\times}4$ 인트라 예측 방법은 예측 블록의 크기가 작기 때문에 $16{\times}16$ 예측 방법과 비교하여 상대적으로 복잡한 영역에서 보다 정밀한 예측이 가능하고, $16{\times}16$ 인트라 예측 방법은 $4{\times}4$ 예측 방법에 비해 상대적으로 큰 예측 블록을 사용하여 예측 방향정보를 적게 전송함으로써 평편한 영역에서 보다 높은 효율로 부호화할 수 있는 특징이 있다. 제안하는 방법은 매크로블록(Macroblock)을 부호화하기 위해 $4{\times}4$ 블록 단위로 예측하여 예측블록의 정밀도를 높이고, 동시에 모두 같은 방향으로 예측하여 예측 방향 정보를 줄임으로써 부호화 효율을 높이는 효과가 있다. 실험 결과, 제안하는 단방향의 $4{\times}4$ 인트라 예측 방법은 기존 H.264/AVC의 $16{\times}16$ 예측 방법과의 툴 단위 성능 비교에서 약 10.47% 정도의 비트 감소를 보인다. 또한, $16{\times}16$ 및 $4{\times}4$ 예측 방법을 모두 적용한 것과 두 가지 방법에 제안한 방법을 추가로 적용했을 때의 성능 비교에서는 평균적으로 약 1.57% 정도의 비트 감소가 있음을 확인할 수 있다.
ITU-T VCEG과 ISO/IEC MPEG은 공동으로 JCT-VC(Joint Collaborative Team on Video Coding) 를 구성하여 차세대 비디오 코덱 HEVC(High Efficiency Video Coding)에 대한 표준화를 진행하고 있다. 차세대 비디오 코덱 HEVC는 H.264/AVC 표준보다 높은 압축률을 보이나, 매우 높은 인코더 계산 복잡도를 가지고 있다. HEVC 인코더의 계산 복잡도를 줄이기 위해서 이 논문에서는 고속 예측단위 결정방법을 제안한다. 제안된 고속 예측단위 결정방법은 현재 prediction unit의 양자화 된 0이 아닌 변환계수가 없으면 남은 prediction unit의 부호화를 생략하여 부호화 시간을 줄이는 방법이다. 제안된 방법은 인코더 계산 복잡도를 HM6.0대비 약 50.3%정도 향상시키나 동일한 수준의 코딩 효율을 유지한다.
In the scalable extension of H.264/AVC, spatial scalability is provided residual information as encoding layered spatial resolution between layers. We use the inter-layer prediction to remove this redundancy. In the inter-layer prediction, as the prediction we can use the signal that is the upsampled signal of the lower resolution layer. In this case, coding efficiency can be different from optimal prediction by kinds of interpolation filter. This paper indicates technique to choose the interpolation filter and to enhance coding efficiency for finding more correct prediction in intra macroblock.
In this study soft computing techniques including, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were investigated for the prediction of Cr(VI) transport efficiency by novel Polymer Inclusion Membranes (PIMs). Transport experiments carried out by varying parameters such as time, film thickness, carrier type, carier rate, plasticizer type, and plasticizer rate. The predictive performance of ANN and ANFIS model was evaluated by using statistical performance criteria such as Root Mean Standard Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). Moreover, Sensitivity Analysis (SA) was carried out to investigate the effect of each input on PIMs Cr(VI) removal efficiency. The proposed ANN model presented reliable and valid results, followed by ANFIS model results. RMSE and MAE values were 0.00556, 0.00163 for ANN and 0.00924, 0.00493 for ANFIS model in the prediction of Cr(VI) removal efficiency on testing data sets. The R2 values were 0.973 and 0.867 on testing data sets by ANN and ANFIS, respectively. Results show that the ANN-based prediction model performed better than ANFIS. SA demonstrated that time; film thickness; carrier type and plasticizer type are major operating parameters having 33.61%, 26.85%, 21.07% and 8.917% contribution, respectively.
최근 초고해상도(UHD: Ultra High Definition) 영상 서비스의 확산을 위하여 기존의 비디오 압축 기술인 H.264/AVC 대비 두 배이상의 압축 성능을 가지는 HEVC (High-Efficiency Video Codec)의 표준화가 완료되었다. 그러나 높은 압축 효과를 얻기 위하여 복잡한 연산이 필요한 기법들이 많이 도입되어 HEVC의 부호화 복잡도는 H.264/AVC보다 크게 증가되었다. 예로써 HEVC의 화면내 예측 부호화는 예측 모드을 최대 35개까지 확장함으로써 기존 H.264/AVC에 비해서 향상된 부호화 효율을 갖지만 화면내 부호화의 복잡도는 크게 증가되어 복잡도 감소 기법이 필요하다. 본 논문은 화면내 예측 부호화에 사용되는 예측 모드 35가지를 비디오 해상도와 양자화 파라미터 크기를 고려하여 4개의 세트로 분류하고 비디오 해상도에 따른 PU (Prediction Unit)의 크기의 점유율에 따라 예측 모드 개수를 변경함으로써 계산 복잡도를 감소시키는 기법을 제안한다. 실험 결과를 통해 제안된 기법을 적용함으로써 대략 2%의 BD-rate 증가로 부호화 시간을 7% 가량 감소시킬 수 있음을 확인하였다.
This paper proposes a compression scheme based on the modified reversible integer transform (MRIT) and forward adaptive prediction for lossless image compression. JPEG XR is the newest image coding standard with high compression ratio and that composed of the Photo Core Transform (PCT) and backward adaptive prediction. To improve the efficiency and quality of compression, we substitutes the PCT and backward adaptive prediction for the modified reversible integer transform (MRIT) and forward adaptive prediction, respectively. Experimental results indicate that the proposed method are superior to the previous method of JPEG XR in terms of lossless compression efficiency and computational complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.