• Title/Summary/Keyword: Efficiency of ventilation

Search Result 403, Processing Time 0.03 seconds

Physiological Analysis of Freestyle and Breast Stroke Swimming in High School Boys (산소 섭취량을 통하여 관찰한 수영의 생리학적 분석)

  • Nam, Kee-Yong;Kwon, Seung-Rak;Cho, Yoon-Sik;Kim, Yoon-Sun;Kim, Dai-Sung;Kim, Young-Tai
    • The Korean Journal of Physiology
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 1969
  • Physiological analysis of swimming in 13 (age:16.3 years, freestyle swimming) and 15 (age:17.2 years, breast stroke swimming) high school boys through oxygen uptake and oxygen debt measurements were performed. The following results were obtained. 1. In freestyle swimming oxygen debt was greater and mechanical efficiency was lower in subjects with less speed. In beginner efficiency was only 1.35%, whereas, in a more skilled subject it ranged to 4.28%. The mean efficiency was 2.59%. 2. In freestyle swimming the speed-oxygen debt curve was convex to the speed axis and the curve shifted to the right the more the speed was greater. 3. Maximal oxygen uptake in breast stroke swimming was 2.51 l/min or 41.8 ml/kin/kg and was 79.3% of treadmill running. Maximal pulmonary ventilation in breast stroke swimming was 73.1 l/min and was 87% of treadmill running. Maximal ventilation equivalent was 2.89 liters. 4. In subjects with greater speed of breast stroke swimming maximal oxygen uptake and mechanical efficiency of swimming were greater. The mechanical efficiency of breast stroke swimming averaged 1.08% $(range:0.51{\sim}1.70%)$. The coefficient of correlation between speed and efficiency was r=.87.

  • PDF

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

Control of Suspended Dust in Various Ventilation Systems of Cement Packaging Process (시멘트 포장공정에서 환기시스템에 따른 발생분진의 제어)

  • Lee, Seung-Chul;Kim, Soo-Chang;Noh, Kwang-Chul;Park, Myoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.463-469
    • /
    • 2009
  • We performed the experimental study on the control of suspended dust in a cement packaging process for various ventilation systems. To effectively remove the dust generated in the cement packaging process, three different kinds of ventilation system, such as local exhaust ventilation, electrostatic scrubber, and local air supply system, were adopted. Dust concentrations in the packaging process were measured with the variation of the airflow rate of the ventilation systems and then their ventilation performance were evaluated. From the results, we knew that the ventilation performance was the best when the local exhaust ventilation and the electrostatic scrubber were simultaneously operated in the packaging process. In the electrostatic scrubber system, the effect of the airflow rate on the indoor dust removal efficiency was negligible so hat he system ust be operated at $2,700m^3/h$ for saving power consumption.

A Study on the Airflow Distribution in the Diagonal Ventilation Circuit for the Design of a High Level Radioactive Waste Repository (고준위 방사성 폐기물 처분장 설계를 위한 Diagonal 환기 회로 내 공기량 분배에 관한 연구)

  • Hwang, In-Phil;Choi, Heui-Joo;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • In this study, diagonal ventilation circuits that are advantageous in air flow direction control were studied. Based on the results of the study, it could be seen that air volumes in diagonal ventilation circuits could also be calculated using numerical formulas or programs if the air volumes and air flow directions to be infused into diagonal branches are determined in advance as with other serial/parallel circuits. To apply the results, design plans for high level radioactive waste repositories applied with diagonal ventilation circuits and parallel ventilation circuits. To compared the each design plans and obtain expected operation results, ventilation network simulations were conducted through the Ventsim program which is a ventilation networking program. Based on the results, in the case of diagonal repositories that was expected to cause great increases in resistance, fan pressure was 1570 pa, total flux was 84 $m^3/s$, fan efficiency was 76.4%, fan power consumption was 181.2 kW and annual fan operating costs were 178,710,838 and thus maximum around 8% differences were shown in pressure and flux values and a difference of around 1.5% was shown in terms of operating costs.

Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm (RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계)

  • Chu B.;Kim D.;Hong D.;Park J.;Chung J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

A Study on the Performance of Ondol with a Ventilation System (환기시스템을 갖춘 온돌 성능에 관한 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4047-4051
    • /
    • 2014
  • Modern apartment houses are constructed to be relatively airtight with a high heat insulation system to increase the energy efficiency. Such a system has a range of deleterious effects due to the insufficient ventilation. In this study, the ondol system, which is used as a heat source typical of winter in Korea, was set as the default system to evaluate the indoor heat environment according to the ventilation method, the factors of energy reduction by the ventilation system was analyzed. The experimental apparatus was used to simulate the ambient conditions for a certain constant temperature and humidity chamber. The experimental results showed that the supply water temperature higher air volume decreases with increasing supply air temperature in the following order: floor supply/exhaust > total heat exchange supply/exhaust > forced supply/exhaust. Through this study, the applicability of various ventilations could be examined.

The Status of Maintenance of Exhaust Fans and Bag filters in Melting Processes in a foundry industrial complex (주물 공단 용해공정의 송풍기 및 백필터 관리 실태)

  • Kim, Tae Hyeung;Ha, Hyun Chul;Jeoung, Chun Hwa;Seo, Jeoung Yoon;Piao, Cheng Xu;Yang, Jun Ho;Li, Xiaoyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2007
  • 18 Local exhaust ventilation systems in 10 melting companies located in an industrial complex were tested to know the status of maintenance. Test items were fan flowrates, fan static pressures, rotational speeds and differential pressures of bag filters. Only 22% of the tested fans has more than 80% flowrate efficiency. 44% of the fans has lower than 60% efficiency. The performance of the fans are not in a good status. For the fans with lower than 60% efficiency, the analysis shows that the lower flowrate might be caused by the degradation of fan performance. On the other hand, for the fan s with higher than 60% efficiency, the main cause of flowrate reduction might be too much pressure losses due to clogging of filter bags. The degradation of fans usually lead the reduction of hood capture efficiency, resulting in the increase of contaminant concentrations in workplace. To keep fans in good status, self inspections should be periodically conducted. This inspection should include the measurements of flowrate and pressures. The most important thing to be performed is the initial test of local exhaust ventilation system because the initial test data should be used to know the level of system degradation.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

LCCA and LCA to Evaluate Feasibility for Introducing High-Efficiency Motors into Air Ventilation Systems of Public Facilities (고효율 전동기를 다중이용시설 환기설비에 도입하기 위한 LCCA 및 LCA 분석)

  • Quan, Junlong;Choi, Sooho;Kwon, Taehwan;Choi, Hyemi;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.41-49
    • /
    • 2015
  • The amount of energy consumed in air ventilation systems of public facilities accounts for 40% of their total energy consumption. To reduce their energy consumption, applying variable speed operation controlled by an inverter with a high-efficiency motor is suggested. Since these methods require higher initial investment costs compared to the existing systems, economic evaluation should be conducted from a long-term perspective. While LCCA(Life Cycle Cost Analysis) model is useful to estimate net savings of alternatives that differs with respect to initial costs and operating costs, the environmental burdens are not considered. On the contrary LCA(Life Cycle Assesment) model is suitable to assess environmental impacts associated with the stages of a product's life but it does not consider costs. In this study, the high-efficient motors are introduced into the air ventilation system of a subway station and a comprehensive analysis on the economic and environmental impacts of the proposed method is conducted by using LCCA and LCA model.