• 제목/요약/키워드: Efficiency of Fiber Orientation

검색결과 22건 처리시간 0.035초

장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향 (Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites)

  • 이동기;심재기;한길영;김혁;김진우;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

섬유배향과 일방향 섬유배향각 변화에 다른 복합재료의 인장강도 비교 (The comparison of the tensile strength of fiber-reinforced composites according to the change of fiber orientat and fiber orientation angle in one direction)

  • 김진우;이정주;이동기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.284-287
    • /
    • 2004
  • After we experiment one direction fiber reinforced composites$(\theta\;=\;0^{\circ},\;J=1)$ to the X direction$(\theta\;=\;0^{\circ},\;J=1)$, we can say that fiber orientation efficiency and fiber orientation angle efficiency become lower. It is because the more the fabric is orientated in a equal direction with one direction fiber floor the more the load given from the exterior becomes shear rather than tension, even though one direction fiber floor gets the most of the exterior power. when fiber content ration is $10wt\%$, the fiber reinforcement efficiency of J=0.3 is similar with the fiber reinforcement efficiency of $\theta=30^{\circ}$ We also found that the fiber reinforcement efficiency of J=0.2 is similar with the fiber reinforcement efficiency of $\theta=20^{\circ}$ in case of $20wt\%$.

  • PDF

The influence of magnetic field on the alignment of steel fiber in fresh cementitious composites

  • Li, Hui;Li, Lu;Li, Lin;Zhou, Jian;Mu, Ru;Xu, Mingfeng
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.323-337
    • /
    • 2022
  • This paper proposes a numerical model to simulate the rotational behavior of steel fiber in fresh cement-based materials in the presence of a magnetic field. The results indicate that as the aspect ratio of fiber increases, the required minimum magnetic field intensity to make fiber rotate in viscous fluid increases. The optimal magnetic field intensity is 0.03 T for aligning steel fiber in fresh cement-based materials to ensure that the applying time of the magnetic field can be conducted concurrently with the vibrating process to increase the aligning efficiency. The orientation factor of steel fiber in cement mortar can exceed 0.85 after aligning by 0.03 T of the uniform magnetic field. When the initial angle of the fiber to the magnetic field direction is less than 10°, the magnetic field less than 0.03 T cannot make the fiber overcome the yield stress of fluid to rotate. The coarse aggregate in steel fiber-reinforced concrete is detrimental to the rotation and alignment of the steel fiber. But the orientation factor of ASFRC under the 0.03T of the magnetic field can also exceed 0.8, while the orientation factor of SFRC without magnetic field application is around 0.6.

Effects of membrane orientation on permeate flux performance in a submerged membrane bioreactor

  • Lee, Tsun Ho;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • 제3권3호
    • /
    • pp.141-149
    • /
    • 2012
  • The aeration provided in a Submerged Membrane Bioreactor (SMBR) improves membrane filtration by creating turbulence on the membrane surface and reducing membrane resistance. However, conventional hollow fiber membrane modules are generally packed in a vertical orientation which limits membrane scouring efficiency, especially when aeration is provided in the axial direction. In the present research, 3 innovative hollow-fiber membrane modules, each with a different membrane orientation, were developed to improve membrane scouring efficiency and enhance permeate flux. Pilot testing was performed to investigate the permeate flux versus time relationship over a 7-day period under different intermittent modes. The results indicated that the best module experienced an overall permeate flux decline of 3.3% after 7 days; the other two modules declined by 13.3% and 18.3%. The lower percentage of permeate flux decline indicated that permeate productivity could be sustained for a longer period of time. As a result, the operational costs associated with membrane cleaning and membrane replacement could be reduced over the lifespan of the module.

Applications of recently proposed closure approximations to injection molding filling simulation of short-fiber reinforced plastics

  • Chung, Du-Hwan;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • 제12권2호
    • /
    • pp.125-133
    • /
    • 2000
  • The present work is aimed at performing injection molding filling simulation of fiber suspension in polymer based matrix. The numerical simulation incorporates the coupling effect between the flow field and the fiber orientation state together with in-plane velocity gradient effect with recently proposed closure approximations. Predicted orientation components are compared with available experimental data of a film-gated strip and a center-gated disk. Predictions with IBOF closure approximation show excellent behaviors with regard to accuracy and numerical efficiency. However, predicted results seem to have consistent errors in comparison with experimental data. Diffusivity term which accounts for fiber-fiber interaction might have to be modified.

  • PDF

사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향 (The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis)

  • 김웅;김종량
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

원통 CFRP 구조재의 굽힘 특성 평가 (Evaluation of Bending Characteristics for Carbon FRP Structure having Circle Cross-section)

  • 김정호;김지훈
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.202-206
    • /
    • 2011
  • Works on the strength and stiffness in the structural members are carried out widely with various material and cross-sections with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. So, Light weight of member structures is necessary for the high performance and various functions. In this study, the CFRP flat and circular member was manufactured by CFRP prepreg sheet in autoclave. Carbon FRP is an anisotropy material whose mechanical properties change with its fiber orientation angle, so this study apply to the effects of the fiber orientation angle on the bending characteristics of the member. Each CFRP flat and circle are compared by strength and stiffness.

콘크리트 패널 내 원형 강섬유의 보강 효율성 (Strengthening Efficiency of Ring Type Steel Fibers in Concrete Panels)

  • 조원택;이차돈;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.327-332
    • /
    • 2001
  • It is generally observed that steel fiber reinforced concrete with traditional straight steel fibers overcomes brittle nature of plain concrete by failure mechanisms by fiber pull-out rather than fiber rupture resulting from fiber yielding or concrete fracture at failured surface. Ring type steel fibers in concrete which is confined in concrete matrix and has better orientation, thus, lead to fiber yielding and concrete fracture as well as increase of flexural behavior of concrete more efficiently, Comparative experimental study is performed in order to measure the relative efficiencies of steel fiber reinforced concrete reinforced with two different fibers. It is found that better toughness is obtained from the ring type steel fiber reinforced concrete than from straight steel fiber reinforced concrete under flexural loading.

  • PDF

적층조건에 따른 혼성 원형 박육부재의 충격압궤거동 (Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition)

  • 이길성;박으뜸;양인영
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

다수의 임의로 경사진 등방성 타원형 장섬유를 포함하는 복합재료에서의 응력 해석 (Stress Analysis in Multiple Isotropic Elliptical Fibers of Arbitrary Orientation)

  • 이정기;오상민
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.235-244
    • /
    • 2013
  • 체적 적분방정식법이라는 새로운 수치해석 방법을 이용하여, 다수의 임의로 경사진 등방성 타원형 장섬유를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 수행하였다. 장섬유들과 기지 사이의 경계면은 완전결합이라고 가정하여, 평면 변형률 해석을 수행하였다. 즉, 등방성 기지에 다수의 임의로 경사진 등방성 타원형 장섬유의 중심이 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 타원형 장섬유의 체적비와 다양한 경사각에 대하여, 중앙에 위치한 등방성 타원형 장섬유와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법을 이용한 해를 해석하고, 유한요소법을 이용한 해와 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.