• Title/Summary/Keyword: Effects of Absorption

Search Result 1,993, Processing Time 0.027 seconds

Effects of the Changes in Handsheet Structure on the Water Absorption and Moisture Absorption (수초지 구조변화에 따른 흡수·흡습 특성 변화 연구)

  • Sung, Yong Joo;Kim, Dong Sung;Lee, Ji Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.30-36
    • /
    • 2016
  • This study was conducted to investigate the influence of the changes in handsheet structure by beating, wet pressing and the addition of wood flour spacer on the water absorption and the moisture absorption properties. The higher beating treatment of BKP resulted in the denser structure of handsheet samples, which leaded to the lower water and moisture absorption. The wet pressing showed the similar effects by reducing the bulk of handsheets. In case of the handsheet samples with similar bulk structure made of different beaten pulps, the severer beating treatment increased the water absorption and the moisture absorption. The addition of the wood flour spacer resulted in the higher bulk following the higher water and moisture adsorption. Since the water and the moisture absorption properties of paper products could greatly affect on not only the product quality but also the process runnability, the control of the water response of paper product has been considered as very important technology. The results of this study might be useful for control of water and moisture absorption properties of paper products.

Effects of a Non-absorbable Gas on the Absorption Process in a Vertical Tube Absorber

  • Hur, ki-Joon;Jeong, Eun-Soo;Jeong, Si-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.69-78
    • /
    • 1999
  • Effects of a non-absorbable gas on the absorption process in a vertical tube absorber has been investigated numerically. The water vapor mixed with air is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. The local absorption rate has been shown to decrease as the mass fraction of air in the water vapor increases. The vapor pressure of water at the liquid-vapor is interface reduced significantly since the non-absorbable gas accumulates near the interface. The effects of non-absorbable gases on absorption rate become larger as the mass flow rate of the vapor decreases. For a small amount of non-absorbable gases, the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. The total absorption rate increases as the mass flow rate of the vapor increases for large concentrations of non-absorbable gases at the inlet of an absorber.

  • PDF

A Study on the Effects of Water Absorption on the Thermal Conductivity of Insulation Materials (수분 흡수가 단열재의 열전도계수에 미치는 영향에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Tae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • IInsulation material is generally used for preventing heat loss from heat transport fluids, and water absorption severely reduces the insulation property. The purpose of this study is to evaluate the amount of water absorption supplied by the pouring method and spraying method, to investigate the effects of water absorption on the thermal conductivity of an insulation material, and modeling the relation between water absorption and thermal conductivity. E-glass, a kind of glass fiber, and HYPERLITE, mainly composed of pearlite, are selected, to compare hygroscopic and insulation properties. E-glass is found to have much higher water absorptivity, compared to HYPERLITE. The thermal conductivity of the water-absorbed E-glass is increased by more than 150%, compared to that of no absorption, while variation of the thermal conductivity of HYPERLITE with water absorption is insignificant. A three-stage model of water absorption for thermal conductivity is developed, and the modeling results are found to be in good agreement with the experimental data.

Lactobacillus rhamnosus CBT-LR5 Improves Lipid Metabolism by Enhancing Vitamin Absorption

  • Dong-Jin, Kim;Tai Yeub, Kim;Yeo-Sang, Yoon;Yongku, Ryu;Myung Jun, Chung
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • Probiotics provide a symbiotic relationship and beneficial effects by balancing the human intestinal microbiota. The relationships between microbiota changes and various diseases may predict health abnormalities and diseases. Treatment with vitamins and probiotics is one therapeutic approach. To evaluate the effect of probiotics on vitamin absorption, we chose Lactobacillus rhamnosus CBT-LR5 treatment, which has resistance to vitamin C-inducible toxicity, with vitamins in high-fat diet (HFD)-induced obesity models. CBT-LR5 affected the absorption of micronutrients, such as ionic minerals and water-soluble vitamins. An increase in vitamin C absorption by CBT-LR5 enhanced the antioxidant response in HFD-induced obesity models. Increased vitamin B absorption by CBT-LR5 regulated lipid metabolism in HFD-induced obesity models. These favorable effects of CBT-LR5 on the absorption of vitamins should be investigated as candidate therapeutic target treatments for metabolic diseases.

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

Effects of Gamma-Irradiation on the Water Absorption Property of Black Soybeans (감마선 조사가 검정콩의 수분흡수 특성에 미치는 영향)

  • 김종군
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.3
    • /
    • pp.101-117
    • /
    • 1992
  • Effects of gamma irradiation(2.5∼20kGy) on water absorption property was studied for a local variety of black soybeans. In water absorption patterns of black soybeans, the time to reach a fixed moisture content was reduced depending on the increment of water soaking temperature and irradiation dose. Irradiation at 2.5∼10kGy resulted in the reduction of soaking time of black soybeans by about 1∼3 hours and the increase of hydration capacity by 10∼20%, respectively, compared to the nonirradiated control black soybean. The water uptake rate constant of the irradiated black soybean difinitely increased with the increase of dose levels and water soaking temperature. The activation energy for water absorption and z-value were lower in the irradiated black soybeans than in the nonirradiated control black soybean. The efficacy of water absorption property in the irradiated black soybeans was also recognized after one year of storage at room temperature.

  • PDF

Effects of Algal Polysaccharides on the Intestinal Absorption of Cadmium in Albino Rat (카드뮴의 장내흡수(腸內吸收)에 미치는 해조다당류(海藻多糖類)의 영향)

  • Kim, Young-Bae;Kang, Myung-Hee;Lee, Su-Rae
    • Journal of Nutrition and Health
    • /
    • v.10 no.1
    • /
    • pp.18-21
    • /
    • 1977
  • Effects of alginate and tangle on the suppression of intestinal absorption of heavy metals were tested by albino rats. The absorption of cadmium was suppressed by adding 5% or 10% alginate to the diets contaminated with 5 ppm cadmium, but not by 1% a1ginate or 10% tangle (p<0.05).

  • PDF

Effects of Charging Conditions on Evaporating Temperature for Diffusion Absorption Refrigerator (확산형 흡수식 냉장고에서 작동매체 충진조건이 증발온도에 미치는 영향)

  • 김선창;김영률;백종현;박승상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.828-834
    • /
    • 2003
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (hydrogen or helium). In this study, experimental investigations have been carried out to examine the effects of charging conditions of working fluids on the evaporating temperature for diffusion absorption refrigerator. Experimental parameters considered in the present experiments are charging concentration, solution charge and system pressure determined by auxiliary gas charged. As a result, in the charging condition of 35% of concentration and 20 kg$_{f}$cm$^2$ of system pressure, the system has the lowest evaporating temperature. It was found that there exists a minimum value of solution charge for the operation of diffusion absorption refrigerator.r.

A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air (공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구)

  • 김선창;오명도;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.