• 제목/요약/키워드: Effective stiffness

검색결과 1,073건 처리시간 0.027초

알루미늄 초경량 차체의 충격 흡수부재 설계 및 충돌 안전도 평가 (Design of the Impact Energy Absorbing Members and Evaluation of the Crashworthiness for Aluminum Intensive Vehicle)

  • 김헌영;김진국;허승진;강혁
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.216-233
    • /
    • 2002
  • Due to the environmental problems of fuel consumption and vehicle emission, etc., automotive makers are trying to reduce the weight of vehicles. The most effective way to reduce a vehicle weight is to use lighter materials, such as aluminum and plastics. Aluminum Intensive Vehicle(AIV) has many advantages in the aspects of weight reduction, body stiffness and model change. So, most of automotive manufacturers are attempting to develop AIV using Aluminum Space Frame(ASF). The weight of AIV can be generally reduced to about 30% than that of conventional steel vehicle without the loss of impact energy absorbing capability. And the body stiffness of AIV is higher than that of conventional steel monocoque body. In this study, Aluminum Intensive Vehicle is developed and analyzed on the basis of steel monocoque body. The energy absorbing characteristics of aluminum extrusion components are investigated from the test and simulation results. The crush and crash characteristics of AIV based on the FMVSS 208 regulations are evaluated in comparison with steel monocoque. Using these results, the design concepts of the effective energy absorbing members and the design guide line to improve crashworthiness for AIV are suggested.

다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구 (Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC))

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발 (Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

팩인홀 작업을 효율적으로 수행하기 위한 컴플라이언스 해석 (Compliance Analysis for Effective Peg-In-Hole Task)

  • 김병호;이병주;서일홍;오상록
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.181-188
    • /
    • 2000
  • This paper deals with an analysis of the compliance characteristic for effective peg-in-hole task using robot hand without inter-finger coupling. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrary. next we classify the task of inserting a peg-in-a-hole into two contact styles between the peg and the hole. Then we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the give peg-in-hole task for each case. It is concluded that the location of compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play important roles for successful peg-in-hole task. Simulation results are included to verify the feasibility of the analytic results.

  • PDF

볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가 (Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance)

  • 황경주
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Determination of slip modulus of cold-formed steel composite members sheathed with plywood structural panels

  • Karki, Dheeraj;Far, Harry;Al-hunity, Suleiman
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.511-522
    • /
    • 2022
  • An experimental investigation to study the behaviour of connections between cold-formed steel (CFS) joist and plywood structural panel is presented in this paper. Material testing on CFS and plywood was carried out to assess their mechanical properties and behaviour. Push-out tests were conducted to determine the slip modulus and failure modes of three different shear connection types. The employed shear connectors in the study were; size 14 (6mm diameter) self-drilling screw, M12 coach screw, and M12 nut and bolt. The effective bending stiffness of composite cold-formed steel and plywood T-beam assembly is calculated based on the slip modulus values computed from push-out tests. The effective bending stiffness was increased by 25.5%, 18% and 30.2% for self-drilling screw, coach screw, nut and bolt, respectively, over the stiffness of cold-formed steel joist alone. This finding suggests the potential to enhance the structural performance of composite cold-formed steel and timber flooring system by mobilisation of composite action present between timber sheathing and CFS joist.

스마트폰 사용시간과 스트레칭이 근경직도 및 집중력과 시력에 미치는 영향 (The Effects of Long-Term Smartphone Usage Time and of Stretching on Stiffness, Concentration, and Visual Acuity)

  • 고민균;송창호;유진호
    • PNF and Movement
    • /
    • 제17권1호
    • /
    • pp.57-68
    • /
    • 2019
  • Purpose: This study is an investigation of the effects of long-term smart phone usage and of stretching on muscle stiffness, concentration, and visual acuity. Methods: Forty healthy young adults voluntarily participated in the study and were measured for muscle stiffness, concentration, and visual acuity before smartphone usage and after 30 minutes, 60 minutes, and 90 minutes of smartphone usage. The participants were randomly allocated to the intervention group (n=20) and the control group (n=20). Five minutes after the stretching exercise and eye exercise intervention, the participants were remeasured. Results: After long-term smartphone usage, increases in muscle stiffness and concentration were statistically significant (p<0.05), whereas decreases in visual acuity were statistically significant (p<0.05). After the stretching exercise and eye exercise intervention, muscle stiffness significantly decreased (p<0.05) and visual acuity significantly increased (p<0.05). Concentration, according to the stretching exercise and eye exercise intervention, showed no significant pre- or post-test difference. Conclusion: The results from this study indicate that long-term smartphone usage effectively improved concentration but increased muscle stiffness and decreased visual acuity. Appropriate stretching and eye movement during long-term smartphones usage should mitigate the effects on muscle stiffness and visual acuity. Furthermore, smartphones should be considered an effective tool for concentration training when coupled with the development of appropriate applications.

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

Effects of Kinesio Taping on Muscle Tone, Stiffness in Patients with Shoulder Pain

  • Choi, Jin-Ho
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.43-47
    • /
    • 2017
  • PURPOSE: The purpose of this study was to identify the effects of physical therapy plus Kinesio taping (KT) on muscle tone and stiffness in patients with shoulder pain. METHODS: This study included 22 participants who were divided into the experimental group (n=11) who underwent a routine physical therapy with KT and the control group (n=11) who received the same physical therapy only. The physical therapy consisted of heat application and electrical stimulation. Heat was applied for 10 minutes and electrical stimulation was conducted for 20 minutes. Intervention was provided over a 1-week period, and frequency for muscle tone and stiffness was measured to determine changes in shoulder muscle status. The muscles were supraspinatus and deltoid. Measurements were taken before, after 1day, 3day and after 1 week to identify time-dependent effects of intervention. RESULTS: The effects of the intervention were significant in both groups, and effects were greater in the experimental group. Changes in muscle tone and stiffness were statistically significant in both groups and at varying time points (p<.05). CONCLUSION: Based on the improved muscle performance found in this study, KT is considered an effective intervention strategy for patients with shoulder pain when it is combined with conventional physical therapy.

압축기-연소실 일체형인 리니어엔진의 스프링 강성에 따른 연소 및 동적 특성 연구 (The Experimental Research for the Combustion and Dynamic Characteristics of the Linear Engine on the Variable Spring Stiffness)

  • 이재완;오용일;김강출;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.619-627
    • /
    • 2012
  • This study was experimentally investigated on the effects of spring stiffness applied to linear compressor chambers. The springs prevented piston head from colliding with engine cover, stored the kinetic energy and regenerated the kinetic energy. The linear engine has two combustion chambers and four compressor chamber. The combustion chamber bore size was 30 mm, maximum stroke was 31 mm and effective stroke volume was 25.45 cc respectively. The spring stiffness was varied such as 0, 0.5, 1.00, 2.9 and 14.7 N/mm. The linear engine was fueled with premixed LPG (propane 99%) and air by pre-mixture device. As an experimental result, The stroke, piston velocity and the piston frequency were increased by high spring stiffness. Also, thermal efficiency was grown. because the increased stroke made the higher compression ratio. In conclusion, electric power and efficiency were improved.