• Title/Summary/Keyword: Effective stiffness

Search Result 1,073, Processing Time 0.024 seconds

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

ECONOMICAL NONLINEAR RESPONSE ANALYSIS USING STIFFNESS MEASURE APPROACH (강성측정법을 이용한 경제적인 비선형해석)

  • 장극관
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • A method used for measuring the stiffness of hinging reinforced concrete frame structures is developed. The so called Stiffness Measure Method is used to evaluate the tangent stiffness of hinge regions while the structure is responding in nonlinear ranges. Eigenvector methods for nonlinear response have not been especially popular because of the need for regenerating eigenvectors as the time history proceeds. In the present work the eigenvectors sets and corresponding nonlinear state variables, i. e., the tangent stiffnesses of the hinge regions, are stored. There is an expectation that previously generated eigenvectors can be reused as the analysis proceeds. The stiffness measure is used to compare the current tangent stiffnesses of hinge regions with those of previously stored eigenvectors sets. Since eigenvector calculations are diminished the method is effective in reducing computational effort for reinforced concrete frame structures subjected to strong ground motions.

  • PDF

A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

Analysis on the Static Performance of Vacuum-Preloaded Porous Air Bearings (진공예압형 다공질 공기베어링의 압력분포 및 성능해석)

  • Khim, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1327-1333
    • /
    • 2013
  • Air bearings are widely used in precision stages because of low friction and high motion accuracy, however, they suffer from low stiffness in comparison with rolling bearings or hydrostatic bearings. So, several preloading methods using weight, magnet and vacuum force, and opposing pads have been used to increase the stiffness of the air bearings. In this paper, pressure distributions of the vacuum preloaded porous air bearings are calculated using the proposed method. And then, the load capacity and stiffness are analyzed. For the vacuum preloaded air bearings, the stiffness is increased owing to reduced bearing clearance by vacuum force. The simulation results indicate that variation of vacuum pressure with clearance in the vacuum pocket gives rise to low stiffness, so the vacuum pocket should be designed for pressure to be constantly maintained regardless of the bearing clearance by means of large effective pumping speed.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

Effects of Negative Pressure Soft Tissue Therapy to Ankle Plantar Flexor on Muscle Tone, Muscle Stiffness, and Balance Ability in Patients with Stroke

  • Kim, Kyu Ryeong;Shin, Houng Soo;Lee, Sang Bin;Hwang, Hyun Sook;Shin, Hee Joon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.2
    • /
    • pp.1468-1474
    • /
    • 2018
  • The purpose of the study was to investigate the immediate effects of negative pressure soft tissue therapy on muscle tone, muscle stiffness and balance in patients with stroke. In total, 20 patients with stroke and assigned to the negative pressure soft tissue therapy group (NPST, n=10) or, placebo-negative pressure soft tissue therapy group(Placebo-NPST, n=10). Both groups underwent NPST or placebo-NPST once a day during the experimental period. MyotonPRO was used to assess the parameters for muscle tone and stiffness. Biorescue was used to assess the parameters for balance. Each group showed improvements in muscle tone, muscle stiffness, and balance ability (p<.05). Especially, Muscle tone, muscle stiffness, and anterior length in the limit of stability were the significant improvement on NPST group (p<.05). The results of the study suggest that the NPST is effective in improving muscle tone, muscle stiffness, and balance ability in patients with stroke.

Vibration Analysis of Trapezoidally Corrugated Plates (사다리꼴 주름판의 진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.928-934
    • /
    • 2013
  • In this paper, the vibration characteristics of the trapezoidally corrugated plate are investigated by the analytical method. The corrugated plate is widely used as the structural elements because of its high stiffness and light weight. Because the corrugated plate is flexible in the corrugation direction and stiff in the transverse direction, it is treated as an equivalent orthotropic plate to analyze the corrugated plate simply. This equivalent plate must include both extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the equivalent plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results and ANSYS solutions. Some numerical results are presented to check the effect of the geometric properties.

Member capacity of columns with semi-rigid end conditions in Oktalok space frames

  • Zhao, Xiao-Ling;Lim, Peter;Joseph, Paul;Pi, Yong-Lin
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • The Oktalok nodal connection system is an aesthetic and efficient system. It has been widely used throughout Australia. The paper will briefly introduce the concept and application of the Oktalok nodal system. The existing design method is based on the assumption that the joints are pin-ended, i.e., the rotational stiffness of the joints is zero. However the ultimate capacity of the frame may increase significantly depending on the rotational stiffness of the joints. Stiffness tests and finite element simulations were carried out to determine the rotational stiffness of the Oktalok joints. Column buckling tests and non-linear finite element analyses were performed to determine the member capacity of columns with semi-rigid end conditions. A simple formulae for the effective length factor of column buckling is derived based on the above experimental and theoretical investigations.

Analysis of Geometric Stability in Robot Force Control (로보트를 이용한 힘제어에서의 기하학적 안정성에 관한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2284-2296
    • /
    • 1994
  • Force control of robotic mechanisms continues to be a challenging area. Previous implementation have seldom produced satisfactory results, and researchers in the past have experienced significant instability problems associated with their force controllers. In this study, a new stability factor in force control will be pointed out. When a manipulator is constrained to an environment(force-controlled), geometric instability due to the relationship between the manipulator configuration and the force-controlled direction is shown to be a significant factor in overall system stability. This exploratory study points out a rather intuitive, geometrically based stability factor in terms of an effective system stiffness and analyzes the phenomenon both analytically and graphically. Also, a stiffness control algorithm using the kinematic redundancy of a kinematically redundant manipulator is proposed to improve the overall stability in force control.

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.