• Title/Summary/Keyword: Effective permeability

Search Result 533, Processing Time 0.022 seconds

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem;Kassem, Amany T.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.327-334
    • /
    • 2018
  • The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Pharmaceutical Usefulness of Biopharmaceutics Classification System: Overview and New Trend

  • Youn, Yu-Seok;Lee, Ju-Ho;Jeong, Seong-Hoon;Shin, Beom-Soo;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.1-7
    • /
    • 2010
  • Since the introduction of the biopharmaceutics classification system (BCS) in 1995, it has viewed as an effective tool to categorize drugs in terms of prediction for bioavailability (BA) and bioequivalence (BE). The BCS consist of four drug categories: class I (highly soluble and highly permeable), class II (low soluble and highly permeable), class III (highly soluble and low permeable) and class IV (low soluble and low permeable), and almost all drugs belong to one of these categories. Likewise, classifying drugs into four categories according to their solubility and permeability is simple and relatively not controversial, and thus the FDA adopted the BCS as a science-based approach in establishing a series of regulatory guidance for the industry. Actually, many pharmaceutical companies have gained a lot of benefits, which directly connect to cost loss and failure decrease in the early stage of drug development. Recently, instead of solubility, using dissolution characteristics (e.g. intrinsic dissolution rate) have provided an improvement in the classification in correlating more closely with in vivo drug dissolution rather than solubility by itself. Furthermore, a newly modified-version of BCS, biopharmaceutics drug disposition classification system (BDDCS), which classify drugs into four categories according to solubility and metabolism, has been introduced and gained much attention as a new insight in respect with the drug classification. This report gives a brief overview of the BCS and its implication, and also introduces the recent new trend of drug classification.

Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier (생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발)

  • 왕수균;오재일;배범한
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder (나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.291-295
    • /
    • 2009
  • The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.

Preparation of Asymmetric Polyethersulfone Membrane and its Gas Separation Performance (폴리이서설폰 비대칭 기체분리막의 제조와 분리성능)

  • 함문기;손우익;이용택;김정훈;이수복
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • Polyethersulfone (PES) asymmetric membranes for gas separation were prepared by dry/wet phase inversion method and their separation properties for CO$_2$ and N$_2$ gases were investigated. The effects of important variables such as composition of casting solution and evaporation time in preparation of asymmetric gas membrane on membrane morphology and the separation properties were analyzed and the optimum condition of membrane preparation was established. To compensate the defects like pinholes existed on skin layer of the membrane prepared, the membranes were coated with silicone resin. By comparing separation properties after coating with those before coating, we found that the coating of silicone resin was effective to enhance the separation properties. The casting solution mainly used in this study consisted of PES, N-methyl-2-pyrrolidone, acetone, ethanol and distilled water was used as coagulation agent. It was shown that the selectivity for CO$_2$/N$_2$ was getting higher but the permeability decreases, as the contents of PES and volatile organic solvent and evaporation time increased. The selectivity for CO$_2$/N$_2$ and permeability of CO$_2$ of the membrane prepared under the optimum condition were found to be 61 and 21 GPU, respectively.

  • PDF

An Equation for the Prediction of Material Function of Super Soft Clay (초연약 점토의 구성관계 산정식)

  • Kang, Myoung-Chan;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.221-228
    • /
    • 2003
  • In land reclamation construction using marine clay, a measure of material function, that is, the relation between void ratio-effective stress and permeability, is very important aspect for the prediction of self-weight consolidation behavior. But reclaimed ground has very high water content, so there are many difficulties in the laboratory test for measuring material function. For this reason, some researches are carried out using slurry cconsolidometr to measure material function. In this study, material function was measured using slurry consolidometer, and to overcome the shortcoming of researches using slurry cosolidometer, an equation for the prediction of material function was proposed on the basis of column test's parameter. Material function was determined through low stress consolidation test and permeability test, and it also was calculated with the equation using column test parameter. The continuity of material function could be confirmed through these tests. Material function is easily determined with the equation proposed in this study, and can be used for the prediction of self-weight consolidation behavior.

Mechanical Properties of an Open Graded Asphalt for Semi-rigid Pavement (반강성 포장용 개립도 아스팔트 재료의 성능평가)

  • Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • The present study evaluated the mechanical properties of open graded asphalt for semi-rigid pavements in order to determine the mixing proportion experimentally. A total twelve types of basic mixing proportions were set up and mechanical tests such as marshall stability, porosity, permeability, and cantabro loss were conducted based on Korean standards. From the tests results, it was found that the marshall stability in case of straight and modified asphalt increase up to the contents with 5.0% and 5.5% respectively. The porosity and permeability of asphalt tended to decrease as the asphalt contents increase, the coefficient of correlation between both were estimated 86%. The increase contents with asphalt range from 3.5% to 6.0% tended to decrease the cantabro loss and the modified asphalt enhanced the resistance of cantabro loss with range from 18.8% to 33.1% than straight asphalt under same asphalt contents. In comparison with test results and quality standards, it was concluded that the modified asphalt content of 4.5% is effective to adopt for open graded asphalt.