• Title/Summary/Keyword: Effective measurement distance

Search Result 162, Processing Time 0.026 seconds

Analysis on Effective Range of Temperature Observation Network for Evaluating Urban Thermal Environment (도시 열환경 평가를 위한 기온관측망 영향범위 분석)

  • Kim, Hyomin;Park, Chan;Jung, Seunghyun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.69-75
    • /
    • 2016
  • Climate change has resulted in the urban heat island (UHI) effect throughout the globe, contributing to heat-related illness and fatalities. In order to reduce such damage, it is necessary to improve the climate observation network for precise observation of the urban thermal environment and quick UHI forecasting system. Purpose: This study analyzed the effective range of the climate observation network and the distribution of the existing Automatic Weather Stations (AWS) in Seoul to propose optimal locations for additional installment of AWS. Method: First, we performed quality analysis to pinpoint missing values and outliers within the high-density temperature data measured. With the result from the analysis, a spatial autocorrelation structure in the temperature data was tested to draw the effective range and correlation distance for each major time period. Result: As a result, it turned out that the optimal effective range for the climate observation network in Seoul in July was a radius of 2.8 kilometers. Based on this result, population density, and temperature data, we selected the locations for additional installment of AWS. This study is expected to be used to generate urban temperature maps, select and move measurement locations since it is able to suggest valid, specific spatial ranges when the data measured in point is converted into surface data.

Effective Perceived Noise Level Prediction for a Propeller driven UAV by using Wind Tunnel Test Data (풍동실험결과를 이용한 프로펠러 무인 항공기의 환경인증소음 예측에 관한 연구)

  • Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • This paper discussed a procedure for noise certification of Aircraft and predicting the full scale over-flight noise of propeller from acoustic wind tunnel measurement of small scale propeller. Noise Certification Procedures is established from International Civil Aviation Organization(ICAO). The data manipulations are then discussed in extrapolation to simulation flight distance and flight simulation. One of the most important point of flight simulation is adjustments for differences between wind tunnel test conditions and flight test conditions. To simulated the noise level estimation procedure for noise data post-process, simulate procedures from data of the wind tunnel noise measurement and the flight noise measurement by using a 7kg degree UAV. This study confirmed an effectively noise estimation procedures by wind tunnel noise test and flight noise test.

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

Object Recognition Face Detection With 3D Imaging Parameters A Research on Measurement Technology (3D영상 객체인식을 통한 얼굴검출 파라미터 측정기술에 대한 연구)

  • Choi, Byung-Kwan;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.53-62
    • /
    • 2011
  • In this paper, high-tech IT Convergence, to the development of complex technology, special technology, video object recognition technology was considered only as a smart - phone technology with the development of personal portable terminal has been developed crossroads. Technology-based detection of 3D face recognition technology that recognizes objects detected through the intelligent video recognition technology has been evolving technologies based on image recognition, face detection technology with through the development speed is booming. In this paper, based on human face recognition technology to detect the object recognition image processing technology is applied through the face recognition technology applied to the IP camera is the party of the mouth, and allowed the ability to identify and apply the human face recognition, measurement techniques applied research is suggested. Study plan: 1) face model based face tracking technology was developed and applied 2) algorithm developed by PC-based measurement of human perception through the CPU load in the face value of their basic parameters can be tracked, and 3) bilateral distance and the angle of gaze can be tracked in real time, proved effective.

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

A Study on Self-Similarity in Turbulent Hydrogen Jet Flames with Coaxial Air (동축공기 수소확산 화염의 자기상사성에 대한 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.71-78
    • /
    • 2002
  • Experiments have been performed using two-color PIV in hydrogen non-premixed flames with various conditions of coaxial air, which was classified into three cases with/without reaction. Mean velocity, turbulence intensity and Reynolds stress were analyzed using flow fields from PIV measurement First, the similarity of pure jet had a good agreement with previous results of other researchers. It was found that the decay of centerline velocity was proportional to $x^{-1}$ in coaxial air conditions. By normalizing axial distance with effective jet diameter defined by effective density, the data of centerline velocity collapsed a single line. And the radial profiles of mean velocity showed that they didn't become self-similar because the curves differed from each other as coaxial air velocity increased at fixed fuel velocity. Also, turbulence intensity became self-similar further downstream than mean velocity.

The Implementation of Remote Health Monitoring System using a Mobile Platform (모바일 플랫폼을 이용한 원격 건강 감시 시스템 구현)

  • Ryu, Geun Taek;Kim, Chang Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.379-385
    • /
    • 2012
  • This paper suggests U-healthcare system for individual health management realizing the gateway, client, and Java-based network server by using the vital signal measuring system and android-based mobile platform. This study realized the vital signal measuring system based on the technology to measure the ECG, oxygen saturation, blood pressure, and respiration, etc. And all the information of measurement was transmitted to the mobile gateway using the 3-bite transmission protocol consisting of headers and data. The data transmitted to the mobile gateway was used to examine the mobile client's personal health indexes through the network server. This paper realized and tested the android-based gateway, client, and the broadcasting network server and verified their validity with simulations and actual humans. As a result, the U-healthcare system suggested was proved to be effective in managing each individual's health from short distance and long distance. And it could examine each individual's health conditions in real-time and was found to be advantageous in that it could secure the guardian's mobility.

Classification of the Somatotypes for the Construction of Young Women's Clothing (Part 1) (청년기 여성의 의복설계를 위한 체형분류 (제1보))

  • 권숙희;김혜경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.282-297
    • /
    • 1996
  • The effective construction for ready-made clothes is one of the central concerns of both consumers and manufactuers in today's apparel industry. In order to reduce the burden of stocks and increase clothing fitness, systematic information on typical body sizes and somatotypes is essential. The purpose of this study i-: to provide basic data on young women's somatotypes for form designers and pattern makers. The subjects of the survey were 310 women of 18 to 26 years old. The study collected 84 anthropometric data for each Person. The data was analyzed by using of the multivariate method. The factor analysis was utilized in regard to the 65 items obtained from anthropometric measurement respectively. The principal component analysis was applied to the data with orthogonal rotation after extraction. The factor scores used in the factor analysis became the basis of determining the value of each variable of the cluster analysis. The cluster analysis was applied for identifying typical somatotypes. Ward's minimum variance method was applied for the purpose of extracting distance metrix by the standardized Euclidean distance. The element forming each cluster can be subdivided into several sets by crosstabulation which is obtained by the fastclus of the SAS. This research has demonstrated 3 distinctive types of silhouette contour of the trunk. Incidentally it also identified 4 of the lower body from the waistline to thigh contour respectively. The discriminant analysis showed that the most significant discriminant factor of the trunk classification were side neck point -1 scapular -1 waistiline length and waist girth. In Korea, the average somatotype of female college students tends to be tall, slim and straight. Reviewing the relationship between the classifications of three parts of body, they are related to each other to some extent but their distribution are not constant. Therefore, in view of clothing construction, a proper separation of the body surface is a necessity.

  • PDF

Relationship between Kinesiotaping and compression wear for postural balance in healthy men: a cross-sectional study

  • Choi, Nak-Hoon;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2020
  • Objective: Compression wear is an external aid which promotes performance and recovery, diminishes muscular microtrauma, reduces muscle fiber recruitment, improves neuromechanics, enhances coordinative activities, and reduces the perceived exertion. The purpose of this study was to investigate the relationship between athletic taping and compression wear on dynamic postural balance in healthy young men. The hypothesis was that the athletic taping and compression wear would affect dynamic postural balance, with athletic taping having a different effect on dynamic postural balance in healthy young adults. Design: Cross-sectional study. Methods: Thirty-seven healthy young men participated in this study. To examine the association between athletic taping and compression wear, 3 clinical measurement tools, including 5 times sit-to-stand (5xSTS), one-leg standing (OLS) test, and Y-balance test (YBT) in 5 different conditions, namely (1) non-supporting, and support with (2) athletic taping, (3) regular compression wear, (4) silicon compression wear, and (5) double-fiber compression wear were used. Results: The distance of the Y-balance test (YBT) on both the dominant and non-dominant sides showed a statistically difference among the 5 supporting conditions (p<0.05). The distance measured via the YBT in the non-support condition was significantly different than that in the other four supporting conditions (p<0.05). However, 5xSTS and OLS were not significantly different in these supporting conditions. Conclusions: The results of this study suggest that athletic taping, silicon compression wear, and double-fiber compression wear were more effective for dynamic balance than non-supporting and regular compression wear.

Depth estimation of an underwater target using DIFAR sonobuoy (다이파 소노부이를 활용한 수중표적 심도 추정)

  • Lee, Young gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • In modern Anti-Submarine Warfare, there are various ways to locate a submarine in a two-dimensional space. For more effective tracking and attack against a submarine the depth of the target is a critical factor. However, it has been difficult to find out the depth of a submarine until now. In this paper a possible solution to the depth estimation of submarines is proposed utilizing DIFAR (Directional Frequency Analysis and Recording) sonobuoy information such as contact bearings at or prior to CPA (Closest Point of Approach) and the target's Doppler signals. The relative depth of the target is determined by applying the Pythagorean theorem to the slant range and horizontal range between the target and the hydrophone of a DIFAR sonobuoy. The slant range is calculated using the Doppler shift and the target's velocity. the horizontal range can be obtained by applying a simple trigonometric function for two consecutive contact bearings and the travel distance of the target. The simulation results show that the algorithm is subject to an elevation angle, which is determined by the relative depth and horizontal distance between the sonobuoy and target, and that a precise measurement of the Doppler shift is crucial.