• Title/Summary/Keyword: Effective jet diameter

Search Result 21, Processing Time 0.022 seconds

Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air (동축공기 수소 확산화염의 구조 및 화염길이 스케일링)

  • Yun, Sang-Wook;Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF

A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance (연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측)

  • Jeong-Sam Son;Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air (희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링)

  • Hwang, Jeong-Jae;Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.242-245
    • /
    • 2009
  • The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

  • PDF

Effect of Mesh Screen Device on Over-Expanded Supersonic Jet Noise (메쉬 스크린 장치가 과팽창 초음속 제트소음에 미치는 영향)

  • Kweon, Yong-Hun;Kim, Jae-Hyung;Lim, Chae-Min;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3150-3155
    • /
    • 2007
  • This paper describes an experimental work to investigate the effect of mesh screen device on the jet structure and acoustic characteristics of over-expanded supersonic jet. The mesh screen device is placed into the supersonic jet stream. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The diameter of the perforated hole and the location of mesh screen device are varied. A Schlieren optical system is used to visualize the flow fields of supersonic jet without and with the mesh screen device. Pitot pressure measurement is carried out to obtain the pressure distribution in the jet flow. Acoustic measurement also is performed to obtain the OASPL and noise spectra. The results obtained show that the jet structure and the jet noise control effectiveness is strongly dependent upon the diameter of the perforated hole and the location of the mesh screen device in the jet stream. Provided that the mesh screen device is placed at the location to perturb effectively the initial shear layer, the present control method is effective in suppressing the supersonic jet noise.

  • PDF

Effect of Orifice Diameter Ratio on Unlike Impinging Jet Mixing (액상 충돌 제트의 혼합에 대한 분사공 직경비의 영향)

  • Lee, S.W.;Cho, Y.H.;Yu, B.I.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.220-227
    • /
    • 2006
  • Experimental studies has been conducted to investigate the effect of orifice diameter ratio on the mixing characteristics of the split element of doublet and triplet elements. The spray characteristics of non-reacting immiscible liquids have been investigated using a patternator. The local volume fraction is measured by use of mean value of each component. This volume measurement represents the mixing characteristics of the liquid, which affect the overall combustion efficiency. The ratio of the orifice diameter, ranging from 1 to 1.5, and that of the jet-momentum, ranging from 0.5 to 6.0, we used. The jet impinging behavior with use of various ratios exhibits substantially different mixing characteristics. Mixing efficiency is maximized when the jet-momentum ratio is increased; this behavior is particularly prominent when the orifice diameter ratio is greater than unity. The split of the triplet element yields better mixing characteristics and is more effective than that of the doublet element in regard to achieving high combustion efficiency. The optimum mixing factor for the triplet element is found to be 0.75, according to our measurement.

  • PDF

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

A Study on Self-Similarity in Turbulent Hydrogen Jet Flames with Coaxial Air (동축공기 수소확산 화염의 자기상사성에 대한 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.71-78
    • /
    • 2002
  • Experiments have been performed using two-color PIV in hydrogen non-premixed flames with various conditions of coaxial air, which was classified into three cases with/without reaction. Mean velocity, turbulence intensity and Reynolds stress were analyzed using flow fields from PIV measurement First, the similarity of pure jet had a good agreement with previous results of other researchers. It was found that the decay of centerline velocity was proportional to $x^{-1}$ in coaxial air conditions. By normalizing axial distance with effective jet diameter defined by effective density, the data of centerline velocity collapsed a single line. And the radial profiles of mean velocity showed that they didn't become self-similar because the curves differed from each other as coaxial air velocity increased at fixed fuel velocity. Also, turbulence intensity became self-similar further downstream than mean velocity.

An Experimental Study on Scaling of Nitrogen Oxide emissions of H2/CO Non-premixed Turbulent Jet Flame with Coaxial Air (동축공기가 있는 H2/CO 비예혼합 난류 제트화염의 질소산화물 배출 상사식에 대한 실험적 연구)

  • Sohn, Kitae;Hwang, Jeongjae;Bouvet, Nicolas;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of fuel composition and coaxial air on the nitrogen oxide emission index was studied in a non-premixed turbulent jet flame. Validity of experimental setup and methodology is checked. The NOx emission trend is similar with previous works in hydrogen flame, but it's not well in $H_2/CO$ flame. Normalized EINOx scaling with modified $S_G$ applying near-field concept was conducted. Experimental data don't collapse single correlation curve, but partially same trend is observed in all cases.

  • PDF

Prediction of Off-line Type Pulse Air Jet Bag Filter Reflection Distance (간헐탈진형 충격기류식 여과집진장치의 여과포 반사거리 예측)

  • Jeong-Sam Son;Yong-Hyun Chung;Jeong-Min Suh
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.801-809
    • /
    • 2023
  • The purpose of this study is to predict the reflection distance following to the pulsing pressure, total air supplying, filter bag size using numercial analysis techniques and use it as an efficient operation condition and economic data for off-line type pulse air jet bag filter. In this research, filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the main experiments using coke dust. Ansys fluent V19.0 apply to CFD simulation, and analysis pulsing characteristics about pulsing pressure, filtration velocity and nozzle diameter. The maximum reflecting distance of off-line type pulse air jet bag filter is 1,000 mm regardless of total air supplying at over the 42 L/m2 conditions, that indicates off-line type can extend filter bag length 1,000 mm than on-line type. In order to effective primary and secondary pulsing of off-line type pulse air jet bag filter, over the 5 bar of pulsing pressure and over the 42 L/m2 of total air supplying are needed.

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.