• 제목/요약/키워드: Effective heat input

검색결과 92건 처리시간 0.022초

입열량에 따른 FCAW용접부 파괴인성에 미치는 미세조직의 영향 (Evaluation of Fracture Toughness and Microstructure on FCA Weldment According to Heat Input)

  • 신용택;강성원;김명현
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.51-60
    • /
    • 2008
  • This paper is to evaluate fracture characteristics of API 2W Gr.50 TMCP steel weldment typically applied for offshore structures, with the focus on the influence of heat input arising from flux cored arc welding. Based on the results and insights developed from this study, it is found that the toughness for both CTOD and impact exhibits a tendency to decrease as the weld heat input increases. The reheated zone of weldmetal exhibit lower hardness than solidified zone and microstructure that are liable to affect the toughness are acicular ferrite and martensite-austenite constituents (M-A). In particular, M-A is a more effective micro-phase for CTOD toughness than impact toughness.

IMPROVEMENT OF GAS TUNGSTEN ARC WELDABILITY FOR FERRlTIC STAINLESS STEELS

  • Cui Li;Jeong, Ho-shin;Park, Byung-Il;Kim, Sung-Kab
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.107-112
    • /
    • 2002
  • Ferritic stainless steels would be the most important alloys under the chloride environment. They are a cheaper alternative to austenitic stainless steels [1]. The present study is related to gas tungsten arc welding (GTAW) characteristics of Type 444 stainless steels. The heat of welding leads to grain coarsening in the HAZ and in the weld metal of ferritic stainless steels because they solidify directly from the liquid to the ferritc phase without any intermediate phase transformation. It is therefore recommended that these alloys be welded with a low heat input and at high welding speeds. Attempts to improve weldability were made by using of direct current straight polarity (DCSP) and pulsed current GTAW processes in this study. Measuring weld bead, grain size and Erichsen test were performed and the effects of heat input, pulse frequency on the weld metal and HAZ were studied. The main results were obtained as followings: decreasing heat input was effective to control the width of weld both in DCSP welding and in pulsed current welding; pulsed current welding was found to refine the grain size effectively and the finest grain size was found at the frequency of 150Hz in pulsed current welding; it was found that decreasing heat input also refine the HAZs effectively and the frequency had no different effect on HAZ at the same heat input; the ductility could be improved effectively in pulsed current welding.

  • PDF

고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 공정변수의 절단폭에 미치는 영향 (Influence of process parameters on the kerfwidth for the case of laser cutting of CPS 1N sheet using high power CW Nd:YAG laser)

  • 김민수;이상훈;박형준;유영태;안동규
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.19-26
    • /
    • 2005
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the practical cutting region and the kerfwidth fer the case of cutting of CSP IN sheet using high power Nd:YAC laser in continuous wave(CW) mode. In order to obtain the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and cutting speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth fur the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensionalaccuracyofthecutarea.

CONE CALORIMETER STUDIES OF WOOD SPECIES

  • Grexa, Ondrej;Horvathova, Elena;Osvald, Anton
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.77-84
    • /
    • 1997
  • Cone calorimeter measurements can be used for the calculation of effective material properties, which can be used as input parameters in modeling of fire. Main parameter measured in Cone calorimeter is heat release rate. Some other parameters as time to ignition, effective heat of combustion, mass loss rate or total heat released is also measured in Cone calorimeter. Total heat released is important from the point of view of total energy available in material in Fire situation. Cone calorimeter. measurements were done on several wood species (oak, beech, spruce, poplar). Measurements were provided at external irradiances 30, 50 and 65 ㎾/$m_2$ in horizontal orientation. Heat release rate data were evaluated and compared as a function of external irradiance for various species of wood. furthermore the influence of external irradiance on effective heat of combustion and total heat release was also evaluated for the period of flame combustion.

  • PDF

다층 양면 개선 맞대기 용접부의 각 변형 예측에 관한 연구 (A Study on the Angular Distortion Prediction of Double Sided Multi-pass Butt Weldment)

  • 신상범;윤중근
    • Journal of Welding and Joining
    • /
    • 제25권1호
    • /
    • pp.37-41
    • /
    • 2007
  • The purpose of this study is to establish the predictive method of angular distortion of the double-sided multi-pass butt weldment achieve it, the behavior of angular distortion in the butt weldment were investigated using comprehensive finite element analyses and experiments. The angular distortion in the multi-pass butt weldment strongly depends on the welding heat input(Q) and the effective bending rigidity of the weld throat. The effective bending rigidity of the first welding pass on the backing side was defined as the function of dimensionless parameter(k) and a bending rigidity of bead-on-plate weldment. Based on the results, the predictive equation for angular distortion of multi-pass butt weldment was proposed and verified by experiments.

회전자를 갖는 분리형 히트파이프의 열전달특성에 관한 연구 (A Study on Heat Transfer Characteristics of Separate Type Heat Pipe with a Rotor)

  • 전철호;김오근
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.75-84
    • /
    • 2000
  • The purpose of this research is to study on the heat transfer characteristics of separate type heat pipe with a rotor. The heat transfer characteristics of the rotor condenser are various on input heat of evaporator, rotational speeds of rotor, and working fluid amount. The results obtained from the study are as follows. 1. Magnetic fluid using seal of the rotor operated in stability by a variation of temperature and rotation speeds. The configuration of magnetic fluid seal assembly was adequate. 2. Steam ejector is effective in recovering working fluid condensate in the rotor. When steam ejector is operating, the heat flux of working fluid does not change, with the wall temperature in the rotor. 3. The optimum design conditions on working fluid amount and rotational speeds are effective in evaporator volume 50%, rotational speeds 200rpm, 300rpm, and operating temperature $80^{\circ}C$. With working fluid amount increasing, overall heat transfer coefficient decreases linearly.

  • PDF

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(I) - 실드 조건에 따른 용접특성 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(I) - Weld Properties with Shield Conditions -)

  • 김종도;곽명섭;김창수
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.55-61
    • /
    • 2009
  • Pure titanium and its alloys have good formability, excellent corrosion resistance and high strength to weight ratios. Therefore, it has been using to heat exchangers, offshore plants, sports equipments, and etc. As broad as its application fields, it also increases welding locations. Conventional GTAW and GMAW are very popular welding methods of titanium, but it has a high heat input and wide HAZ. It has a possibility of inducing Stress Corrosion Cracking. So, laser welding method has been using to get reliable welds by reducing heat input. Weld beads change its color to silver, gold, brown, blue, and gray by shied conditions. And the closer to gray, the more oxidize, nitride and embrittlement. The most effective atom to embrittlement was nitrogen. And shield gas flow was not so effective over the constant flow rates. In this study, weld properties of the pure titanium were investigated by pulsed & CW Nd:YAG lasers and evaluated by various shield conditions. And It is observed that nitrogen is more effective to oxidation and embrittlement of titanium compared with oxygen by oxygen and nitrogen quantitative analysis.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

경사진 채널 밑면에 부착된 모사모듈의 복합열전달 (Conjugated heat transfer of the simulated module on the bottom of a inclined channel)

  • 이진호;조성훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.471-476
    • /
    • 2001
  • The characteristics of conjugated heat transfer in the inclined channel was experimentally investigated. The simulated module is attached to the bottom of the inclined channel and is heated with constant heat flux. The experimental parameters of this study are input power (Q = 3, 7W), inlet air velocity ($V_{i}=0.1{\sim}0.9m/s$) and inclined channel angle (${\varphi}=0{\sim}90^{\circ}$). The results show that input power was most effective parameter on the temperature differences between module and air. As the inclined channel angle increases, the temperatures of the module are increased. And we obtained the best condition on the conductive board when ${\varphi}=0^{\circ}$.

  • PDF

증기분사를 적용한 고온수용 지열 히트펌프의 성능특성 (Performance of the Geothermal Heat Pump using Vapor Injection for Hot Water)

  • 박용정;박병덕
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.297-304
    • /
    • 2014
  • The purpose of this study is to evaluate the experimental performance characteristics of a water-to-water geothermal heat pump featuring a vapor refrigerant injection for the production of hot water. The performance of geothermal heat pump with a vapor injection was evaluated by comparing with that of a conventional geothermal heat pump without a vapor injection. For heating operation, the geothermal heat pump with a vapor injection is superior in COP and heating capacity. The vapor injection was more effective for supplying hot water while overloading. The vapor injection was effective for the improvement of the cooling capacity. However, the vapor injection was not effective for the increasing of COP according to the increased input of a compressor. The advantage of vapor injection in water-to-water geothermal heat pump become disappeared while cooling operation with lower part loading.