• 제목/요약/키워드: Effective fuel Lewis number

검색결과 5건 처리시간 0.023초

He와 Ar으로 희석된 합성가스 화염에서 루이스 수와 선호확산효과 (Effects of Lewis Number and Preferential Diffusion in Syngas Flame Diluted with He and Ar)

  • 김태형;박정;권오붕;박종호
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.28-34
    • /
    • 2014
  • Numerical study is conducted to grasp flame characteristics in $H_2/CO$ syngas counterflow diffusion flames diluted with He and Ar. An effective fuel Lewis number, applicable to premixed burning regime and even to moderately-stretched diffusion flames, is suggested through the comparison among fuel Lewis number, effective Lewis number, and effective fuel Lewis number. Flame characteristics with and without the suppression of the diffusivities of H, $H_2$, and He are compared in order to clarify the important role of preferential diffusion effects through them. It is found that the scarcity of H and He in reaction zone increases flame temperature whereas that of $H_2$ deteriorates flame temperature. Impact of preferential diffusion of H, $H_2$, and He in flame characteristics is also addressed to reaction pathways for the purpose of displaying chemical effects.

상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구 (Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames)

  • 오상훈;박정;권오붕
    • 한국연소학회지
    • /
    • 제17권3호
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • ;박정;권오붕;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

음향 가진 된 프로판 확산 화염의 부상 거동에 관한 실험적 연구 (Experimental Study on the Lift-off Behavior of Tone-excited Propane Jet Diffusion flames)

  • 김승곤;박정;김태권;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-73
    • /
    • 2003
  • An experimental study on flame lift-off characteristics of propane jet flame highly diluted with nitrogen has been conducted introducing acoustic forcing with a tube resonant frequency. A flame stability curve is attained according to forcing strength and nozzle exit velocity for $N_2$ diluted flames. Flame lift-off behavior with forcing strength and nozzle exit velocity is globally categorized into three; a well premixed behavior caused by a collapsible mixing for large forcing strength, a coexistent behavior of well-premixed and edge flames interacting with well-organized inner fuel vortices for moderate forcing strengths, and edge flame behavior for small forcing strengths. Special focus is concentrated on the coexistent behavior of the flame base in lifted flame since this may give a hint to a possibility which the flame base behaves like a well-mixed premixed flame in highly turbulent lifted flames. It is also shown that the acoustic forcing to self-pulsating laminar lifted flame affects flame lift-off behavior considerably which is closely related to downstream flow velocity, mixture strength, effective fuel Lewis number, and flame stretch.

  • PDF

합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과 (Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames)

  • ;송원식;박정;권오붕;배대석;윤진한;길상인
    • 대한기계학회논문집B
    • /
    • 제35권2호
    • /
    • pp.179-188
    • /
    • 2011
  • 본 연구에서는 합성가스-공기 화염의 셀 불안정성에 있어서 탄화수소 연료의 첨가효과를 알아보기 위하여 상온, 고압, 정적상태의 연소실에서 실험을 수행하였다. 층류화염전파속도는 상세반응기구와 전달물성치를 사용하여 계산하였고 이를 실험으로 측정된 값과 비교하였다. 탄화수소 연료가 첨가된 합성가스-공기 화염의 셀 불안정성은 수력학적 불안정성과 확산-열 불안정성의 관점에서 평가되며 희박예혼합 화염에 대해 실험으로부터 측정된 셀불안정성을 유발하는 임계 Peclet 수는 이론적으로 얻어진 값과 비교하였다. 실험결과는 반응혼합물에 탄화수소 계 연료의 첨가량이 증가할수록 화염전파속도는 감소함을 보였다. 합성가스-공기화염에 프로판과 부탄을 첨가하였을 경우 수력학적 불안정성과 확산-열 불안정성이 감소하여 셀 형성은 현저하게 감소하였다. 반면 메탄을 첨가하였을 경우 셀 불안정성이 완화되는 효과는 없었다.