• Title/Summary/Keyword: Effective elastic modulus

Search Result 186, Processing Time 0.026 seconds

Study of Determination in Measurement System for Safely Managing Debris-Flow (안전한 토석류 관리를 위한 계측기 선정에 관한 연구)

  • Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

A Study on Effects of EGCG and Design Parameter for Drug-Eluting Biodegradable Polymer Stents (약물-용출 생분해성 고분자 스텐트를 위한 EGCG와 디자인 파라미터의 영향에 대한 연구)

  • Jung, T.G.;Lee, J.H.;Lee, J.J.;Hyon, S.H.;Han, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.111-116
    • /
    • 2013
  • Finite element analysis(FEA) has been extensively applied in the analyses of biomechanical properties of stents. Geometrically, a closed-cell stent is an assembly of a number of repeated unit cells and exhibits periodicity in both longitudinal and circumferential directions. This study concentrates on various parameters of the FEA models for the analysis of drug-eluting biodegradable polymeric stents for application to the treatment of coronary artery disease. In order to determine the mechanical characteristics of biodegradable polymeric stents, FEA was used to model two different types of stents: tubular stents(TS) and helicoidal stents(HS). For this modeling, epigallocatechin-3-O-gallate (EGCG)-eluting poly[(L-lactide-co-${\varepsilon}$-caprolactone), PLCL] (E-PLCL) was chosen as drug-eluting stent materials. E-PLCL was prepared by blending PLCL with 5% EGCG as previously described. In addition, the effects of EGCG blending on the mechanical properties of PLCL were investigated for both types of stent models. EGCG did not affect tensile strength at break, but significantly increased elastic modulus of PLCL. It is suggested that FEA is a cost-effective method to improve the design of drug-eluting biodegradable polymeric stents.

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Studies on Surface Treatment of Kaolin Filler (Part 3) - Interaction between Surface Modified Filler and Rubber Matrix and Characterization of Reinforcement Effects of Filler - (Kaolin충전제(充塡劑) 표면처리(表面處理)에 관(關)한 硏究(연구) (제3보(第3報)) - 첨가(添加)된 충전제充塡劑)와 고무Matrix와의 Interaction 및 충전제(充塡劑) 보강효과(補强效果)의 특성화(特性化) -)

  • Kwon, Dong-Yong;Hong, Sung-Il
    • Elastomers and Composites
    • /
    • v.20 no.1
    • /
    • pp.25-39
    • /
    • 1985
  • Elastomer-filler interaction in terms of characterization of filler effects was studied using natural rubber(NR) loaded with kaolin fillers modified with sodium polyphosphate and poly(maleic anhydride), respectively. Kaolins modified with sodium polyphosphate or poly(maleic anhydride) show adhering characteristics by Kraus plot. Reinforcement activity according to Cunneen-Russell method is given by those fillers, in which sodium polyphosphate-treated kaolin presents more favorable results than that treated with poly(maleic anhydride) with respect to adhesion constant, reinforcement extent, elastic constant, and crosslink density. When applied to Blanchard's linkage reinforcement theory, NR vulcanizates loaded with kaolin modified with sodium polyphosphate meet the requirements for both approximate linkage reinforcement(${\psi}'$) of 1.02 to 4.94 and accurate linkage reinforcement($\psi$) of 1.00 to 1.18, representing the values of effective wetting($C_{\psi}$) for 0.001 to 0.029 and intrinsic linkage reinforcement(${\psi}_0$) for 1.015 to 1.124, respectively, whille negligible linkage reinforcement is shown by NR vulcanizates loaded with kaolin treated with poly(maleic anhydride). Dynamic storage modulus(G') given by surface modified kaolins presents more favorable crosslink density rates of $2.260{\times}10^{-5}\;mole/cm^3-min$. for sodium polyphosphate treated kaolin and $1.305{\times}10^{-5}\;mole/cm^3-min$. for poly(maleic anhydride) treated kaolin, respectively, compared to untreated kaolin showing the rate of $1.033{\times}10^{-5}\;mole/cm^3-min$.

  • PDF

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

Changes of Undrained Shear Behavior of Sand due to Cementation (고결(Cementation)에 따른 모래의 비배수 전단거동 변화)

  • Lee Woo-Jin;Lee Moon-Joo;Choi Sung-Kun;Hong Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2006
  • Triaxial tests at isotropic confining pressure of 200 kPa were carried out to show the undrained shear behavior of artificially cemented sands, which were cemented by gypsum, and the influences of relative density and DOC (degree of cementation) were investigated from the results. The yield strength, the elastic secant modulus at yield point and the peak frictional angle of cemented sands increased abruptly compared to uncemented sands, and it was checked that cementation exerts more influence on the behavior of sand than the relative density. But after breakage of the cementation bonds, the relative density was more important factor on the behavior of sand than the cementation. Because the compressibility md the excess pore pressure of cemented sands were reduced due to the cementation bonds, the effective stress path of cemented sands was going toward to the total stress path of uncemented sands. The cementation of sand restricted the dialtion of sand at the pre-yield condition, but induced more dilation in the post-yield condition.