• Title/Summary/Keyword: Effective cutting depth

Search Result 57, Processing Time 0.029 seconds

Automatic Feedrate Adjustment for 2D Profile Milling (2차원 윤곽가공에서 이송률 자동 조정)

  • 고기훈;서정철;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.175-183
    • /
    • 2000
  • Proposed in this paper is a model-bated AFA (automatic feedrate-adjustment) method for maintaining smooth cutting-loads (i.e., cutting-force) during 2D-profile milling. Before the cutting-force model was established, some assumptions were verified through a series of preliminary cutting experiments (The results found that the curving-force was independent of the cutting speed and the cutting action at the cutter bosom). From the data obtained during the main cutting experiments, a “chip-load/cutting-force model”representing the cutting-force as a function of the chip-load (i.e., effective cutting-depth) and a feedrate is proposed. Based on the model. an AFA scheme for maintaining smooth cutting-force by adjusting the feedrate (i.e., F-code) according to the changes in chip-load was proposed. To check the validity of the proposed AFA scheme. another set of cutting experiments was conducted by using feedrate-adjusted NC-data while monitoring the actual machining processes using an accelerometer. The experimental results showed that the proposed AFA-scheme was quite effective.

  • PDF

A study on the Effective Cutting Conditions of Cage Motor Rotor(2) (농형회전자의 유효절삭조건에 관한 연구(2))

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • This paper proposed on the effective cutting conditions of cage motor rotor by turning. If you want to introduce automatic manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions are necessary. The cutting process of cage motor rotor requires the precision and the out of roundness of cage motor rotor. The surface roughness of cutting face. it is very important factor with effect on the magnetic flux density of cage motor rotor. The purpose of this study is to find out the effects of cutting condition. upon adapting this results, we will improve the production rate in the cutting process of cage motor rotor. As a result, the selection of cutting conditions are important factors to production rate. And these are chosen by the investigations of cutting characters and surface roughness. The experimental result, showed that the increase of cutting speed caused the decrease of cutting force and the high surface integrity. The increase of feed rate and increase of depth of cut caused the increase of cutting force and surface roughness. Thus, the effective cutting conditions of cage motor rotor by turing are cutting speed 291m/min, feed rate 0.10mm/rev, depth of cut 0.05mm.

  • PDF

A Study on the Wear of Ceramic Tool in Finish Machining of STD11 Steel (STD11강의 다듬질절삭에 의한 세라믹공구의 마멸에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 1995
  • In this study, Wear of a ceramic cutting tool for hardened STD11 steel was investigated. Under the finish machining condition. DOC notch wear of a ceramic cutting tool was mostly occurred earlier than flank and crater wear were proceeded. The relations of DOC notch wear, which was characteristically produced at the beginning of cutting. to cutting speed, feed, depth of cut, and nose radius of a ceramic cutting tool were examined. Effective approach angle, which is a function of cutting conditions, and boundary area were suggested, and then the influence of those was investigated, The following conclusions were obtained: (1)as cutting speed was increasing. DOC notch wear was decreasing (2) the cutting condition that magnitude of slendermess ratio was made small, was favorable for DOC notch wear, (3) as depth of cut was smaller, the influence of feed on DOC notch wear was also smaller, (4) DOC notch wear was mainly influenced by effective approach angle, but by boundary area in the range of low feed.

  • PDF

Assessment of Cutting Performance for SM45C using CNC Lathe (CNC에 의한 SM45C 선삭시 절삭성능 평가)

  • 황경충
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

A Study on the Cutting Resistance Characteristics of Hardended Steel according to Engagement Condition (물림조건에 따른 경화강의 절삭저항 특성에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.58-65
    • /
    • 1996
  • This thesis is concerned with the study on the characteristics of the cutting resistance occurring in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool with nose radius. For the purpose, the shape of cutting cross-section made at nose part of the tool was analyzed geometrically and the wear mechanism on the flank face of the ceramic tool is investigated. In order to investigate the characteristics of cutting resistance two categories of cutting conditions are suggested, along with geometrical analysis. One category includes the conventional cutting parameters such as feed and depth of cut, another containing new cutting parameters of thickness of cut and width of cut etc. Thickness of cut width of cut and area of undeformed chip section formed by the condition of engagement between workpiece and cutting tool are determined as the function of feed, depth of cut and nose radius of cutting too, And an effective approach angle is determined by depth of cut and nose radius.

  • PDF

The relation of Cutting conditions and Microscopic precision (고속가공시 절삭조건과 미시적 정밀도의 관계)

  • 강명창;김정석;이득우;김전하;김철희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.981-984
    • /
    • 1997
  • This paper deals with the relation of cutting conditions and damaged layer by investigating cutting force, cutting temperature and residual stress in high speed machining. Damaged layer was measured using optical microscope on samples prepared by metallographic techniques. The scale of this damaged layer depends upon characteristics of cutting force and cutting temperature. Damaged layer depth increases with feed per tooth and radial depth. In a different another way, damaged layer remains almost unchanged according to spindle speed. Therefore, the effective method for decreasing damaged layer is that cut down feed per tooth and radial depth.

  • PDF

Two-dimensional Chip-load Analysis for Automatic Feedrate Adjustment (이송률 자동조정을 위한 2차원 칩로드 해석)

  • 배석형;고기훈;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.155-167
    • /
    • 2000
  • To be presented is two-dimensional chip-load analysis for cutting-load smoothing which is needed in unmanned machining and high speed machining of sculptured surfaces. Cutter-engagement angle and effective cutting depth are defined as chip-loads which are the geometrical measures corresponding to cutting-load while machining. The extreme values of chip-loads are geometrically derived in the line-line and line-arc-line blocks of the two-dimensional NC-codes. AFA(automatic feedrate adjustment) strategy for cutting-load smoothing is presented based on the chip-load trajectories.

  • PDF

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.

An Analysis of Cutting Force in Micromachining (미소절삭에서의 절삭력 해석)

  • Kim, Dong Sik;Kahng, C.H.;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF

Optimum Working Condition of Surface Roughness for End-Milling Using Taguchi Design (다구찌 기법을 이용한 엔드밀 가공시 최적 표면거칠기를 위한 가공조건선정)

  • 이상재;배효준;전태옥;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.553-556
    • /
    • 2003
  • End-milling have been used in the industrial world because it is very effective to the manufacture of mechanical parts with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study carried to decide the optimum cutting condition for surface roughness and rapid manufacturing time using design of experiment and ANOVA. From the results of experimentation, surface roughness have an effect on cutting direction, spindle speed and depth of cut. And then the optimum condition used Taguchi design is upward cutting in cutting direction, 600rpm in spindle speed, 240mm/min feed rate, 2mm in axial depth of cut and 0.25mm radial depth of cut. By using design of experiment, it is effectively represented shape characteristics of working surface in end-milling.

  • PDF