• Title/Summary/Keyword: Effective Water Head

Search Result 103, Processing Time 0.026 seconds

A Power-Generation System using Cavitation jet flow (케비테이션 제트 유동을 이용한 발전 시스템)

  • Na, Jeoungsu;Lee, Kangju;Lee, Bongyeol;Joo, Namsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF

Modeling Infiltration and Redistribution for Multistorm Runoff Events

  • 유동렬;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.74-77
    • /
    • 2000
  • Infiltration and water flow in the upper soil layer of a deep water table aquifer are modeled for multistorm runoff events. The infiltration process is developed using the sharp wetting front model of Green and Ampt, and the following redistribution process is modeled using the gravity drained rectangular approximation. The Brooks-Corey model [Brooks and Corey, 1966] is adopted to relate the effective soil saturation, the tension head, and the unsaturated hydraulic conductivity Firstly, the infiltration and redistribution model is developed for a single stom runoff event. Then a couple of events combined for multistorm runoff events. In the later case, infiltration rate of the second rainfall is strongly influenced by the length of the rainfall hiatus and soil moisture profile.

  • PDF

A Comparison of Filtering Characteristics of Various Media considering Particle Size Distribution of Road Runoff (도로면 강우유출수의 입도분포를 고려한 여재특성 비교분석)

  • Koo, Bonjin;Choi, Gyewoon;Choi, Weonsuk;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.299-312
    • /
    • 2013
  • This study investigated the contaminant loading and characteristics of particle size distributions(PSDs) in the rainfall runoff from two different sources, the pavement road and the ancillary parking lot, and then evaluated four different types of filter media(i.e., EPP, EPS, Zeolite, and Perlite) to treat runoff water. The results showed that runoff from the pavement road contains 5.6 and 20 times higher SS and Pb concentrations, respectively, than that from the parking lot. The particles smaller than $100{\mu}m$ occupied 89.8 % of runoff from the pavement road and 81.4 % of that from the parking lot by volume. The effect of the hydraulic loading, at 950 m/day filtering linar velocity and 40 cm head loss, was largest for Zeolite, followed by Perlite, EPS, and EPP. The return period of tested media calculated by the regression equation for head loss indicated that EPP has the longest life time. The average SS removal rate was similar for all media at between 84.9 % and 89 %, while the effect of various filter column heights was different, showing minimal for EPP and maximum for EPS. All filter media tested demonstrated over 95 % of SS treatment efficiency for the particles bigger than $100{\mu}m$, while for the ones smaller than $100{\mu}m$ the efficiency was in order of EPP(82.4%) > Perlite(76.1 %) > EPS(66.2 %) > Zeolite(65.2 %). The results in conclusion implies that EPP is most effective filter media for the highly contaminated fine particles from road runoff.

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Experimental Research on Effects of Water Sprayed Curtain On Anti-diffusion of Fire Gases in Case of Tunnel Fire (터널 화재시 물분무노즐에 의해 형성되는 제연수막의 연기층 확산방지성능에 관한 실험적 연구)

  • Park, Hyung-Joo;Choi, Young-Sang;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2004
  • In case of a fire in road or railway tunnel it is always necessary to keep the escape condition as good as possible. Most of the victims of major fires in tunnels are because they couldn't leave the tunnel in time and were trapped by smoke, or rescue teams couldn't reach the place of the accident due to low visibility and high temperature. In spring 2003 a comprehensive field experiment was undertaken in a large scaled tunnel in Youngin City to test the effectiveness of a new water spray curtain system, designed to the air qualify inside of a tunnel in case of fire during passenger's escape to safe routes, In order to control the smoke propagation, fixed water sprayed nozzles were used to make water curtain system, which can be installed or hanging water piping line below ceiling. The experiment was accompanied by an extensive measurement campaign in order to measure temperature dropping effect and flow conditions as well as CO concentration for various water sprayed curtains produced by sprinkler heads or water spray nozzle. Eventually comparison analysis were undertaken to investigate the performance of water curtains under fixed water pressure. Therefore most effective water curtain system was presented on the basis of water droplet size in long tunnel.

VOLATILE CONSTITUENTS OF COOKED SQUID (피등어꼴뚜기의 자숙취에 관한 연구)

  • LEE Eung-Ho;KOIZUMI Chiaki;NONAKA Junsaku
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 1978
  • In this study, gas chromatographic analysis was carried out on volatile constituents of cooked squid for the object of obtaining information on the characteristic flavor of the cooked squid meat. The results obtained are as follows: 1) Methanol was the most effective solvent for the extraction of volatile constituents of squid meat. 2) Twenty five and thirty two peaks were detected from the condensate collected in cold traps which were immersed in ice water and dry ice-acetone, respectively. In these compounds, five kinds of volatile organic acids such as acetic acid, butyric acid, iso-valeric acid, valeric acid, and caproic acid were identified. 3) Eleven peaks were detected from the head space vapor collected in cold trap which is immersed in liquid nitrogen. Volatile amines identified in these components are as follows; methylamine, trimethylamine, dimethylamine, ethylamine, and iso-propylamine.

  • PDF

Development of Cost-Effective Platform for Tracking and Analysis of Animal Ambulatory Patterns

  • Kwon, Jeonghoon;Park, Hong Ju;Joo, Segyeong;Huh, Soo-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.82-86
    • /
    • 2014
  • This paper reports the development of a platform for tracking and analysis of animal locomotion. The platform is composed of a commercial webcam, a metal stand for the webcam, and a plastic bathtub as a cage. Using it, researchers can track and analyze an animal's movement within the plastic bathtub's dimensions of $100cm{\times}100cm{\times}55cm$ in a cost-effective manner. After recording the locomotion of an animal with $1920{\times}1080$ resolution at a rate of 30 frames per second, finding the position of the animal in each frame and analyzing the ambulation pattern were executed with custom software. To evaluate the performance of the platform, movements of imprinting control region mice and transgenic mice were recorded and analyzed. The analysis successfully compared velocity, moving pattern, and total moving distance for the two mouse groups. In addition, the developed platform can be used not only in simple motion analysis but also in various experimental conditions, such as a water maze, by easy customization of the platform. Such a simple and cost-effective platform yields a powerful tool for animal ambulatory analysis.

Feasibility Study on the Construction of Small Hydro-Power Plants in Gumi Sewage Treatment Plant Discharge Point (구미하수처리장 방류구에서의 소수력발전 설치 및 운영에 관한 연구)

  • Nah, Dong-Hun;Lee, Seung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.173-181
    • /
    • 2010
  • This study was conducted to investigate the possible installation of small hydro-power plant at the discharge point of Gumi sewage treatment plant (STP) using treated wastewater. Sufficient amount of water to transfer to electric power and the selection of proper location are two essential elements for the construction of small hydro-power facility. Preliminary analysis based on site visit and existing data in Gumi STP were made. Capacity of the small hydro-power plants and exact location were determined by geomorphological condition and flow duration characteristics. Flow duration characteristics and its duration curve were identified using monthly rainfall data in Gumi STP. Relevant facts of small hydro-power system in other STP were referred to adopt to Gumi STP situation. Flowrate of treated effluents and effective head between flow chamber and the location of hydraulic turbine in Gumi STP are found to be $3.70m^3$/sec and 3.5m respectively. Electric generation rate based on this feasibility study was estimated to be 86.3kW/h. Yearly electric generation rate was expected to be 932.4MMh. Proposed small hydro-power plant construction in Gumi STP is to be reasonable.

Development of Biological Filtration Process for Effective Nitrogen Removal and its Control strategies in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거를 위한 운전제어법 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.230-237
    • /
    • 2006
  • The operational parameters and control strategies of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. Methanol addition was controlled based on the COD/N ratio or McCarty's equation. Constant COD/N ratio control results in excess addition under large diurnal fluctuation of $NOx^--N$, and McCarty's equation can be used to add appropriate amount of methanol. Control of methanol addition by on-line nitrate measurement, control of aeration by on-line DO measurement, and control of backwashing by head loss measurement are successfully operated. These results proved that this process prove the easy-maintenance and cost-effectively treatment is attainable.

The Economic Impacts of Subsidizing Water Industry Under Greenhouse Gases Mitigation Policy in Korea: A CGE Modeling Approach (국가 온실가스 저감정책과 물산업 지원의 경제적 영향 분석 - 연산일반균형모형 분석)

  • Kim, Jae Joon;Park, Sung Je
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1201-1211
    • /
    • 2012
  • This paper constructed the single country sequential dynamic CGE model to analyze the economic impacts of subsidizing water industry under the GHG emission abatement policy in Korea. We introduced the carbon tax to reduce the GHG emission and made two scenarios. One is to transfer the total tax revenue to household. The other is to mix the tax transfer and water industry support. Our Simulation results show that the macroeconomic effects might be positive by subsidizing water industry compared with the pure tax transfer. However, the support of water industry doesn't contribute to head for the non-energy intensive economy because it's economic activity highly depend on fossil energy and energy intensive products as intermediate demand. This means that it is important to make efforts on the cost effective measures such as energy technology progress, alternative energy development, and energy efficiency improvement in water industry against climate change policy.